Mangrove-Centric Alternative Livelihoods

  • Chapter
  • First Online:
Climate Resilient Innovative Livelihoods in Indian Sundarban Delta

Abstract

The concept of climate resilient sustainable livelihoods implies not just what people do in order to live and survive comfortably for a short period of time, but the resources that provide them a long-term benefit for several generations. In order to develop a sustainable climate-resilient livelihood model in the frame work of mangrove dominated Indian Sundarbans, a wide range of relevant data sets have been explored in this chapter considering the physico-chemical features of three major sectors (western, central, and eastern) of Indian Sundarbans like regional, sectoral, rural, and urban employment dynamics, sector-wise ecological profile of Indian Sundarbans (preferably salinity-based spatial variation), sector-wise existing livelihoods in Indian Sundarbans, awareness on climate-resilient mangrove—centric innovative livelihoods, sector-wise Island business model prospects etc. Based on significant spatial variations of salinity (the major driver of biodiversity variation in the region), there exists prominent variation in alternative livelihood profile between the three sectors of Indian Sundarbans that have been depicted in the present chapter with benefit cost analysis befitted for the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54

    Google Scholar 

  • Agarwal S, Albeshr MF, Mahboobb S, Atique U, Pramanick P, Mitra A (2022) Bioaccumulation factor (BAF) of heavy metals in green seaweed to assess the phytoremediation potential. J King Saud Univ Sci (Elsevier) 34(5):102078(1–7). https://doi.org/10.1016/j.jksus.2022.102078

  • Ahmed AK, Johnson KA (2000) Horticultural development of Australian native edible plants. Aust J Bot 48:417–426

    Google Scholar 

  • Amin G, Trivedi S, Pramanick P, Mitra A (2018) Spatio-temporal variations of Heavy metal levels in green seaweed inhabiting Indian Sundarbans. Sci Fed J Sep Tech 1(1):1–3

    Google Scholar 

  • Bandaranayke WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plant. Wetlands Ecol Manag 10:421–452

    Google Scholar 

  • Banerjee K, Chakraborty S, Paul R, Bal G, Zaman S, Pramanick P, Amin G, Fazli P, Mitra A (2015) Macrobenthic molluscan diversity in the major intertidal zones of the maritime states of India. J Environ Sci Pollut Res 1(1):8–11

    Google Scholar 

  • Ben Hamed K, Debez A, Chibani F, Abdelly C (2004) Salt response of Crithmum maritimum, an oleagineous halophyte. Trop Ecol 45:151–159

    Google Scholar 

  • BOSTID (1990) Saline agriculture salt-tolerant plants for develo** countries. National Academy Press, Washington, DC. http://pdf.usaid.gov/pdfdocs/PNABH313.pdf

  • Carlsson R, Clarke EMW (1983) Atriplex hortensis L. as a leafy vegetable and as a leaf protein concentrate plant. Plant Foods Hum Nutr 33:127–133

    Google Scholar 

  • Chaudhuri AB, Choudhury A (1994) Mangroves of the Sundarbans. Volume 1: India. World Conservation Union, Gland, 247

    Google Scholar 

  • de Vos AC, Broekman R, Guerra CCD, van Rijsselberghe M, Rozema J (2013) Develo** and testing new halophyte crops: a case study of salt tolerance of two species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officinalis. Environ Exp Bot 92:154–164

    Google Scholar 

  • Debez A, Saadaoui D, Slama I, Huchzermeyer B, Abdelly C (2010) Responses of Batis maritima plants challenged with up to two-fold seawater NaCl salinity. J Plant Nutr Soil Sci 173:291–299

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric methods for determination of sugars and related substances. Analyt Chem 28:350–356

    Google Scholar 

  • Ellis F (1998) Survey article: household strategies and rural livelihood diversification. J Dev Stud 35(1):1–38

    Google Scholar 

  • Ellis F (2000) Rural livelihoods and diversity in develo** countries. Oxford University Press, Oxford

    Google Scholar 

  • Essaidi I, Brahmi Z, Snoussi A, Ben Haj Koubaier H, Casabianca H, Abe N, El Omri A, Chaabouni MM, Bouzouita N (2013) Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control 32:125–133. https://doi.org/10.1016/j.foodcont.2012.11.006

  • Felger RS, McRoy CP (1975) Seagrasses as potential food plants. In: Somem CF (ed) Seed bearing halophytes as food plants. University of Delaware, Newark, Delaware, US, College of Marine Studies, pp 62–69

    Google Scholar 

  • Felger RS, Moser MB (1976) Seri Indian food plants: desert subsistence without agriculture. Ecol Food Nutr 5:13–27

    Google Scholar 

  • Flowers TJ, Gracia A, Koyama M, Yeo AR (1997) Breeding for salt tolerance in crop plants. The role of molecular biology. Acta Physiol Plant 19:427–433

    Google Scholar 

  • Folch J, Lees M, Solam-Stanley GH (1957) A simple method for the isolation and purification of claot lipid from animal tissue. J Biol Chem 226:497–509

    Google Scholar 

  • Frank W (1982) Vitamin C in sea fennel (Crithmum maritimum), an edible wild plant. Econ Bot 36(2):163–165

    Google Scholar 

  • Hove CV (1989) Azolla: and its multiple uses with emphasis on Africa. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • https://run.unl.pt/bitstream/10362/25208/1/Vieira_etall_2017.pdf

  • https://worldpopulationreview.com/countries

  • https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf

  • Katole SB, Lende SR, Patil SS (2017) A review on potential livestock feed: Azolla. Livest Res Int 05:01–09

    Google Scholar 

  • Koziol MJ (1992) Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J Food Compost Anal 5:35–68

    Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2009) Sesuvium portulacastrum (L.) L. a promising halophyte: cultivation, utilization and distribution in India. Genet Resour Crop Evol 56:741–747. https://doi.org/10.1007/s10722-009-9435-1

  • Maat GJR (2004) Scurvy in adults and youngsters: the Dutch experience. A review of the history and pathology of a disregarded disease. Int J Osteoarchaeol 14:77–81

    Google Scholar 

  • Mitra A (2013) Sensitivity of mangrove ecosystem to changing climate. Springer, New Delhi, Heidelberg, New York, Dordrecht, London

    Google Scholar 

  • Mitra A (2023) Impact of COVID-19 lockdown on environmental health: exploring the situation of the lower Gangetic delta. Springer ISBN 978-3-031-27242-4 (eBook), vol XIII, pp 310. https://doi.org/10.1007/978-3-031-27242-4

  • Mitra A, Zaman S (2015) Blue carbon reservoir of the blue planet published by Springer, ISBN 978-81-322-2106-7. XII. https://doi.org/10.1007/978-81-322-2107-4

  • Mitra A, Zaman S, Pramanick P (2022) Blue economy in Indian Sundarbans: exploring livelihood opportunities. Springer ISBN 978-3-031-07908-5 (e-Book), vol XIV, pp 403. https://doi.org/10.1007/978-3-031-07908-5

  • Mukhopadhyay PK, Rangacharyulu PV, Mitra G, Jana BB (2003) Applied nutrition in freshwater prawn, Macrobrachium rosenbergii, culture. J Appl Aquac 13:317–340

    Google Scholar 

  • Nambiar VS, Dhaduk JJ, Sareen N, Shahu T, Desai R (2011) Potential functional implications of pearl millet (Pennisetum glaucum) in health and disease. J Appl Pharma Sci 1(10):62–67

    Google Scholar 

  • Pearlsteina SL, Felger RS, Glenn EP, Harringtond J, Al-Ghanem KA, Nelsona SG (2012) NyPa (Distichlis palmeri): a perennial grain crop for saltwater irrigation. J Arid Environ 82:60–70

    Google Scholar 

  • Pornpitakdamrong A, Sudjaroen Y (2014) Seablite (Suaeda maritima) product for cooking, Samut Songkram province, Thailand. Food Nutri Sci 5:850–856

    Google Scholar 

  • Pramanick P, Bera D, Banerjee K, Zaman S, Mitra A (2016) Seasonal variation of proximate composition of common seaweeds in Indian Sundarbans. Int J Life Sci Sci Res 2(5):570–578

    Google Scholar 

  • Pramanick P, Zaman S, Rudra T, Guha A, Mitra A (2015) Heavy metals in a dominant seaweed species from the islands of Indian Sundarbans. Int J Life Sci Pharm Res 5(2):64–71

    Google Scholar 

  • Risi JC, Galway NW (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216

    Google Scholar 

  • Roy Chowdhury G, Pal N, Zaman S, Saha A, Mitra A (2017) Shrimp seed collection in Indian Sundarban Estuaries: a threat to overall estuaries ecosystem services. J Environ Social Sci 4(1):1–3

    Google Scholar 

  • Sadeghi R, Zarkami R (2013) A review of some ecological factors affecting the growth of Azolla spp. Casp J Envirion Sci 11:65–76

    Google Scholar 

  • Sadeghi R, Zarkami R, Sabetraftar K, Van Damme P (2012) Application of classification trees to model the distribution pattern of a new exotic species Azolla filiculoides (Lam.) at Selkeh Wildlife Refuge. Anzali Wetland. Iran Ecol Modell 243:8–17. https://doi.org/10.1016/j.ecolmodel.2012.06.011

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78:5–38

    Google Scholar 

  • Simopoulos AP (2004) Omega-3 fatty acids and antioxidants in edible wild plants. Bio Res 37:263–277

    Google Scholar 

  • Singh D, Buhmann AK, Flowers TJ et al (2014) Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB Plants. https://doi.org/10.1093/aobpla/plu071

  • SĹ‚upski J, Achrem-Achremowicz J, Lisiewska Z, Korus A (2010) Effect of processing on the amino acid content of New Zealand spinach (Tetragonia tetragonioides Pall. Kuntze). Int J Food Sci Technol 45:1682–1688

    Google Scholar 

  • Smillie C (2015) Suaeda spp. as a biomonitor of Cu and Zn in salt marsh sediments. Ecol Indic 56:70–78. https://doi.org/10.1016/j.ecolind.2015.03.010

  • Tanaka T (1976) Tanaka’s cyclopedia of edible plants of the world. Keigaku publishing, Tokyo

    Google Scholar 

  • Tecator (1987) Determination of Kjeldahl nitrogen content with Kjeltec system 1026 Appication Note 86/87. 1987.02.18. Kjeltec 1026 Manual. Tecator, Sweden

    Google Scholar 

  • Ventura Y, Wuddineh WA, Myrzabayeva M, Alikulov Z, Khozin-Goldberg I, Shpigel M, Samocha TM, Sagi M (2011) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci Hortic 128:189–196

    Google Scholar 

  • Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–26. https://doi.org/10.1007/BF02857915

  • Yamamoto K, Oguri S, Chiba S, Momonoki YS (2009) Molecular cloning of acetylcholinesterase gene from Salicornia europaea L. Plant Signal Behav 4:361–366

    Google Scholar 

  • Yazici I, Turkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57

    Google Scholar 

  • Yensen NP, Yensen SB, Weber CW (1985) A review of Distichlis spp. for production and nutritional value. In: Whitehead EE, Hutchenson EF, Timmermann BN, Varady RG (eds) Arid land today and tomorrow. Westview Press, Boulder, CO, pp 809–822

    Google Scholar 

  • Zerai DB, Glenn EP, Chatervedi R, Lu Z, Mamood AN, Nelson SG, Ray DT (2010) Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol Eng 36:730–739

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Mitra .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, A., Zaman, S., Pramanick, P. (2023). Mangrove-Centric Alternative Livelihoods. In: Climate Resilient Innovative Livelihoods in Indian Sundarban Delta. Springer, Cham. https://doi.org/10.1007/978-3-031-42633-9_4

Download citation

Publish with us

Policies and ethics

Navigation