Molecular Biomarkers Affecting Moyamoya Disease

  • Chapter
  • First Online:
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 49))

  • 146 Accesses

Abstract

Although the pathogenetic pathway of moyamoya disease (MMD) remains unknown, studies have indicated that variations in the RING finger protein RNF 213 is the strongest susceptible gene of MMD. In addition to the polymorphism of this gene, many circulating angiogenetic factors such as growth factors, vascular progenitor cells, inflammatory and immune mediators, angiogenesis related cytokines, as well as circulating proteins promoting intimal hyperplasia, excessive collateral formation, smooth muscle migration and atypical migration may also play critical roles in producing this disease. Identification of these circulating molecules biomarkers may be used for the early detection of this disease. In this chapter, how the hypothesized pathophysiology of these factors affect MMD and the interactive modulation between them are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suzuki J, Takaku A. Cerebrovascular "moyamoya" disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20(3):288–99.

    Article  CAS  PubMed  Google Scholar 

  2. Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360(12):1226–37.

    Article  CAS  PubMed  Google Scholar 

  3. Shang S, et al. Progress in moyamoya disease. Neurosurg Rev. 2020;43(2):371–82.

    Article  PubMed  Google Scholar 

  4. Dorschel KB, Wanebo JE. Genetic and proteomic contributions to the pathophysiology of moyamoya angiopathy and related vascular diseases. Appl Clin Genet. 2021;14:145–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goto Y, Yonekawa Y. Worldwide distribution of moyamoya disease. Neurol Med Chir (Tokyo). 1992;32(12):883–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kuroda S, Houkin K. Moyamoya disease: current concepts and future perspectives. Lancet Neurol. 2008;7(11):1056–66.

    Article  PubMed  Google Scholar 

  7. Kamada F, et al. A genome-wide association study identifies RNF213 as the first moyamoya disease gene. J Hum Genet. 2011;56(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  8. Freemont PS, The RING, finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci. 1993;684:174–92.

    Article  CAS  PubMed  Google Scholar 

  9. Elangovan M, et al. The ubiquitin-interacting motif of 26S proteasome subunit S5a induces A549 lung cancer cell death. Biochem Biophys Res Commun. 2007;364(2):226–30.

    Article  CAS  PubMed  Google Scholar 

  10. Liu W, et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One. 2011;6(7):e22542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Houkin K, et al. Review of past research and current concepts on the etiology of moyamoya disease. Neurol Med Chir (Tokyo). 2012;52(5):267–77.

    Article  PubMed  Google Scholar 

  12. Bang OY, Fujimura M, Kim SK. The pathophysiology of moyamoya disease: an update. J Stroke. 2016;18(1):12–20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fujimura M, et al. Genetics and biomarkers of moyamoya disease: significance of RNF213 as a susceptibility gene. J Stroke. 2014;16(2):65–72.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kang HS, et al. Plasma matrix metalloproteinases, cytokines and angiogenic factors in moyamoya disease. J Neurol Neurosurg Psychiatry. 2010;81(6):673–8.

    Article  PubMed  Google Scholar 

  15. Sakamoto S, et al. Expression of vascular endothelial growth factor in dura mater of patients with moyamoya disease. Neurosurg Rev. 2008;31(1):77–81. discussion 81.

    Article  PubMed  Google Scholar 

  16. Park YS, et al. The role of VEGF and KDR polymorphisms in moyamoya disease and collateral revascularization. PLoS One. 2012;7(10):e47158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Olsson AK, et al. VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71.

    Article  CAS  PubMed  Google Scholar 

  18. He J, et al. Expression of circulating vascular endothelial growth factor-antagonizing cytokines and vascular stabilizing factors prior to and following bypass surgery in patients with moyamoya disease. Exp Ther Med. 2014;8(1):302–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jaipersad AS, et al. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014;63(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi A, et al. The cerebrospinal fluid in patients with moyamoya disease (spontaneous occlusion of the circle of Willis) contains high level of basic fibroblast growth factor. Neurosci Lett. 1993;160(2):214–6.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshimoto T, et al. Angiogenic factors in moyamoya disease. Stroke. 1996;27(12):2160–5.

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto M, et al. Differences in cellular responses to mitogens in arterial smooth muscle cells derived from patients with moyamoya disease. Stroke. 1998;29(6):1188–93.

    Article  CAS  PubMed  Google Scholar 

  23. Morishita R, et al. Impairment of collateral formation in lipoprotein(a) transgenic mice: therapeutic angiogenesis induced by human hepatocyte growth factor gene. Circulation. 2002;105(12):1491–6.

    Article  CAS  PubMed  Google Scholar 

  24. Nanba R, et al. Increased expression of hepatocyte growth factor in cerebrospinal fluid and intracranial artery in moyamoya disease. Stroke. 2004;35(12):2837–42.

    Article  CAS  PubMed  Google Scholar 

  25. Takagi Y, et al. Expression of hypoxia-inducing factor-1 alpha and endoglin in intimal hyperplasia of the middle cerebral artery of patients with Moyamoya disease. Neurosurgery. 2007;60(2):338–45. discussion 345

    Article  PubMed  Google Scholar 

  26. Blecharz KG, et al. Autocrine release of angiopoietin-2 mediates cerebrovascular disintegration in Moyamoya disease. J Cereb Blood Flow Metab. 2017;37(4):1527–39.

    Article  CAS  PubMed  Google Scholar 

  27. Yu J, et al. Significance of serum angiopoietin-2 in patients with hemorrhage in adult-onset Moyamoya disease. Biomed Res Int. 2020;2020:8209313.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rafat N, et al. Increased levels of circulating endothelial progenitor cells in patients with Moyamoya disease. Stroke. 2009;40(2):432–8.

    Article  CAS  PubMed  Google Scholar 

  29. Paschalaki KE, Randi AM. Recent advances in endothelial colony forming cells toward their use in clinical translation. Front Med (Lausanne). 2018;5:295.

    Article  PubMed  Google Scholar 

  30. Yoshihara T, et al. Increase in circulating CD34-positive cells in patients with angiographic evidence of moyamoya-like vessels. J Cereb Blood Flow Metab. 2008;28(6):1086–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kim JH, et al. Decreased level and defective function of circulating endothelial progenitor cells in children with moyamoya disease. J Neurosci Res. 2010;88(3):510–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lee JY, et al. Deregulation of retinaldehyde dehydrogenase 2 leads to defective angiogenic function of endothelial colony-forming cells in Pediatric moyamoya disease. Arterioscler Thromb Vasc Biol. 2015;35(7):1670–7.

    Article  CAS  PubMed  Google Scholar 

  33. Choi JW, et al. Mitochondrial abnormalities related to the dysfunction of circulating endothelial colony-forming cells in moyamoya disease. J Neurosurg. 2018;129(5):1151–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kang HS, et al. Smooth-muscle progenitor cells isolated from patients with moyamoya disease: novel experimental cell model. J Neurosurg. 2014;120(2):415–25.

    Article  CAS  PubMed  Google Scholar 

  35. Guo DC, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84(5):617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jung KH, et al. Circulating endothelial progenitor cells as a pathogenetic marker of moyamoya disease. J Cereb Blood Flow Metab. 2008;28(11):1795–803.

    Article  CAS  PubMed  Google Scholar 

  37. Tokunaga K, Date I. Moyamoya disease. Brain Nerve. 2008;60(1):37–42.

    PubMed  Google Scholar 

  38. Hojo M, et al. Role of transforming growth factor-beta1 in the pathogenesis of moyamoya disease. J Neurosurg. 1998;89(4):623–9.

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto M, et al. Increase in elastin gene expression and protein synthesis in arterial smooth muscle cells derived from patients with Moyamoya disease. Stroke. 1997;28(9):1733–8.

    Article  CAS  PubMed  Google Scholar 

  40. Weng L, et al. Association of increased Treg and Th17 with pathogenesis of moyamoya disease. Sci Rep. 2017;7(1):3071.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boylan JF, Gudas LJ. The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells. J Biol Chem. 1992;267(30):21486–91.

    Article  CAS  PubMed  Google Scholar 

  42. Kim SK, et al. Elevation of CRABP-I in the cerebrospinal fluid of patients with Moyamoya disease. Stroke. 2003;34(12):2835–41.

    Article  CAS  PubMed  Google Scholar 

  43. Blecharz-Lang KG, et al. Gelatinolytic activity of autocrine matrix metalloproteinase-9 leads to endothelial de-arrangement in Moyamoya disease. J Cereb Blood Flow Metab. 2018;38(11):1940–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fujimura M, et al. Increased expression of serum Matrix Metalloproteinase-9 in patients with moyamoya disease. Surg Neurol. 2009;72(5):476–80. discussion 480

    Article  PubMed  Google Scholar 

  45. Ni G, et al. Increased levels of circulating SDF-1alpha and CD34+ CXCR4+ cells in patients with moyamoya disease. Eur J Neurol. 2011;18(11):1304–9.

    Article  CAS  PubMed  Google Scholar 

  46. Phi JH, et al. Chemokine ligand 5 (CCL5) derived from endothelial colony-forming cells (ECFCs) mediates recruitment of smooth muscle progenitor cells (SPCs) toward critical vascular locations in Moyamoya disease. PLoS One. 2017;12(1):e0169714.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mikami T, et al. Influence of inflammatory disease on the pathophysiology of moyamoya disease and quasi-moyamoya disease. Neurol Med Chir (Tokyo). 2019;59(10):361–70.

    Article  PubMed  Google Scholar 

  48. Fujimura M, et al. Increased serum production of soluble CD163 and CXCL5 in patients with moyamoya disease: involvement of intrinsic immune reaction in its pathogenesis. Brain Res. 2018;1679:39–44.

    Article  CAS  PubMed  Google Scholar 

  49. Lin R, et al. Clinical and immunopathological features of Moyamoya disease. PLoS One. 2012;7(4):e36386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sigdel TK, et al. Immune response profiling identifies autoantibodies specific to Moyamoya patients. Orphanet J Rare Dis. 2013;8:45.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bang OY, et al. Caveolin-1, Ring finger protein 213, and endothelial function in Moyamoya disease. Int J Stroke. 2016;11(9):999–1008.

    Article  PubMed  Google Scholar 

  52. Chung JW, et al. Cav-1 (Caveolin-1) and arterial remodeling in adult Moyamoya disease. Stroke. 2018;49(11):2597–604.

    Article  CAS  PubMed  Google Scholar 

  53. Sonveaux P, et al. Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res. 2004;95(2):154–61.

    Article  CAS  PubMed  Google Scholar 

  54. Noda A, et al. Elevation of nitric oxide metabolites in the cerebrospinal fluid of patients with moyamoya disease. Acta Neurochir. 2000;142(11):1275–9. discussion 1279-80

    Article  CAS  PubMed  Google Scholar 

  55. Park YS, et al. Age-specific eNOS polymorphisms in moyamoya disease. Childs Nerv Syst. 2011;27(11):1919–26.

    Article  PubMed  Google Scholar 

  56. Kashiwazaki D, Uchino H, Kuroda S. Downregulation of apolipoprotein-E and apolipoprotein-J in moyamoya disease-a proteome analysis of cerebrospinal fluid. J Stroke Cerebrovasc Dis. 2017;26(12):2981–7.

    Article  PubMed  Google Scholar 

  57. Roder C, et al. Polymorphisms in TGFB1 and PDGFRB are associated with Moyamoya disease in European patients. Acta Neurochir. 2010;152(12):2153–60.

    Article  PubMed  Google Scholar 

  58. Bedini G, et al. Vasculogenic and angiogenic pathways in moyamoya disease. Curr Med Chem. 2016;23(4):315–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Kwang Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tu, YK., Fang, YC. (2024). Molecular Biomarkers Affecting Moyamoya Disease. In: Di Rocco, C. (eds) Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-031-42398-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42398-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42397-0

  • Online ISBN: 978-3-031-42398-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation