Horizontal Gene Transfer in Fungi and Its Ecological Importance

  • Chapter
  • First Online:
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

Abstract

Fungi are one of the most diverse kingdoms in the tree of life, thrive in virtually every habitat on the planet, and are vital for a plethora of ecosystems and human-related activities. The advent of genomic technologies has revolutionized the study of fungal ecology and evolution. Surprisingly, evolutionary genomic investigations have revealed that horizontal gene transfer (HGT)—the movement of genetic material from one organism to another by means other than sexual reproduction—is an important factor influencing the ecology and evolution of fungal genomes. This chapter uses an evolutionary framework to discuss the extent and distribution of HGT across fungal ecologies and lifestyles, focusing on some of the best-supported cases to address fundamental questions such as frequencies, barriers, and mechanisms for eukaryotic HGT. One important conclusion that can be drawn from studies of fungal HGT is that HGT rate varies extensively across lineages and that this variation can generally be associated with distinctive ecologies, lifestyles, or genetic backgrounds. Similarly, not all functional categories of genes are equally likely to result in successful transfers. The factors underlying both frequency and functional variations of HGT across fungi are thoroughly discussed. Advances in genomic and synthetic biology technologies will continue to shed light on these questions and bring many other still unanswered questions into focus. Some of these questions and directions for future research are highlighted at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander WG, Wisecaver JH, Rokas A, Hittinger CT (2016) Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides. Proc Natl Acad Sci U S A 113:4116–4121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altincicek B, Kovacs JL, Gerardo NM (2012) Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biol Lett 8:253–257

    Article  PubMed  Google Scholar 

  • Andam CP, Gogarten JP (2011) Biased gene transfer in microbial evolution. Nat Rev Microbiol 9:543–555

    Article  CAS  PubMed  Google Scholar 

  • Andersson JO, Sjögren AM, Davis LA, Embley TM, Roger AJ (2003) Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 13:94–104

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K-I, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci U S A 100:7678–7683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold BJ, Huang IT, Hanage WP (2022) Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol 20:206–218

    Article  CAS  PubMed  Google Scholar 

  • Barber AE, Sae-Ong T, Kang K, Seelbinder B, Li J, Walther G, Panagiotou G, Kurzai O (2021) Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. Nat Microbiol 6:1526–1536

    Google Scholar 

  • Barbosa R, Pontes A, Santos RO, Montandon GG, de Ponzzes-Gomes CM, Morais PB, Gonçalves P, Rosa CA, Sampaio JP (2018) Multiple rounds of artificial selection promote microbe secondary domestication—the case of cachaça yeasts. Genome Biol Evol 10:1939–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian R, Andika IB, Pang T, Lian Z, Wei S, Niu E, Wu Y, Kondo H, Liu X, Sun L (2020) Facilitative and synergistic interactions between fungal and plant viruses. Proc Natl Acad Sci U S A 117:3779–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredeweg EL, Baker SE (2020) Horizontal Gene Transfer in Fungi. In: Nevalainen H (ed) Grand challenges in fungal biotechnology. Springer International Publishing, Cham

    Google Scholar 

  • Brockhurst MA, Harrison E, Hall JPJ, Richards T, McNally A, MacLean C (2019) The ecology and evolution of pangenomes. Curr Biol 29:R1094–r1103

    Article  CAS  PubMed  Google Scholar 

  • Bruto M, Prigent-Combaret C, Luis P, Moënne-Loccoz Y, Muller D (2014) Frequent, independent transfers of a catabolic gene from bacteria to contrasted filamentous eukaryotes. Proc Biol Sci 281:20140848

    PubMed  PubMed Central  Google Scholar 

  • Bryon A, Kurlovs AH, Dermauw W, Greenhalgh R, Riga M, Grbić M, Tirry L, Osakabe M, Vontas J, Clark RM, Van Leeuwen T (2017) Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae. Proc Natl Acad Sci 114:E5871–E5880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell MA, Rokas A, Slot JC (2012) Horizontal transfer and death of a fungal secondary metabolic gene cluster. Genome Biol Evol 4:289–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciach M, Pawłowska J, Muszewska A (2021) Horizontal gene transfer in 44 early diverging fungi favors short, metabolic, extracellular proteins from associated bacteria. bioRxiv 2021.12.02.471044

    Google Scholar 

  • Coelho MA, Gonçalves C, Sampaio JP, Gonçalves P (2013) Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene. PLoS Genet 9:e1003587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen O, Gophna U, Pupko T (2011) The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol Biol Evol 28:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Coleine C, Stajich JE, Selbmann L (2022) Fungi are key players in extreme ecosystems. Trends Ecol Evol 37:517–528

    Article  CAS  PubMed  Google Scholar 

  • Corradi N (2015) Microsporidia: eukaryotic intracellular parasites shaped by gene loss and horizontal gene transfers. Annu Rev Microbiol 69:167–183

    Article  CAS  PubMed  Google Scholar 

  • Cote-L’Heureux A, Maurer-Alcalá XX, Katz LA (2022) Old genes in new places: a taxon-rich analysis of interdomain lateral gene transfer events. PLoS Genet 18:e1010239

    Article  PubMed  PubMed Central  Google Scholar 

  • Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci U S A 105:10039–10044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jonge R, Peter van Esse H, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U S A 109:5110–5115

    Article  PubMed  PubMed Central  Google Scholar 

  • de Reus E, Nielsen MR, Frandsen RJN (2019) Metabolic and regulatory insights from the experimental horizontal gene transfer of the aurofusarin and bikaverin gene clusters to Aspergillus nidulans. Mol Microbiol 112:1684–1700

    Google Scholar 

  • de Vega C, Albaladejo RG, Guzman B, Steenhuisen SL, Johnson SD, Herrera CM, Lachance MA (2017) Flowers as a reservoir of yeast diversity: description of Wickerhamiella nectarea f.a. sp. nov., and Wickerhamiella natalensis f.a. sp. nov. from South African flowers and pollinators, and transfer of related Candida species to the genus Wickerhamiella as new combinations. FEMS Yeast Res 17

    Google Scholar 

  • de Vries S, Stukenbrock EH, Rose LE (2020) Rapid evolution in plant-microbe interactions - an evolutionary genomics perspective. New Phytol 226:1256–1262

    Article  PubMed  Google Scholar 

  • Dean P, Sendra KM, Williams TA, Watson AK, Major P, Nakjang S, Kozhevnikova E, Goldberg AV, Kunji ERS, Hirt RP, Embley TM (2018) Transporter gene acquisition and innovation in the evolution of Microsporidia intracellular parasites. Nat Commun 9:1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillon B, Feau N, Aerts AL, Beauseigle S, Bernier L, Copeland A, Foster A, Gill N, Henrissat B, Herath P, LaButti KM, Levasseur A, Lindquist EA, Majoor E, Ohm RA, Pangilinan JL, Pribowo A, Saddler JN, Sakalidis ML, de Vries RP, Grigoriev IV, Goodwin SB, Tanguay P, Hamelin RC (2015) Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen. Proc Natl Acad Sci U S A 112:3451–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF (1999) Lateral genomics. Trends Cell Biol 9:M5–M8

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF, Boucher Y, Nesbø CL, Douady CJ, Andersson JO, Roger AJ (2003) How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond Ser B Biol Sci 358:39–57 discussion 57–8

    Article  CAS  Google Scholar 

  • Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang D, Miao Y, Rahimi MJ, Grujic M, Cai F, Pourmehdi S, Salim KA, Pretzer C, Kopchinskiy AG, Henrissat B, Kuo A, Hundley H, Wang M, Aerts A, Salamov A, Lipzen A, LaButti K, Barry K, Grigoriev IV, Shen Q, Kubicek CP (2018) Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet 14:e1007322

    Google Scholar 

  • Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ (2017) Lateral gene transfer in the adaptation of the anaerobic parasite Blastocystis to the gut. Curr Biol 27:807–820

    Google Scholar 

  • Eyres I, Boschetti C, Crisp A, Smith TP, Fontaneto D, Tunnacliffe A, Barraclough TG (2015) Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol 13:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X, Qiu H, Han W, Wang Y, Xu D, Zhang X, Bhattacharya D, Ye N (2020) Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. Science. Advances 6:eaba0111

    CAS  Google Scholar 

  • Filannino P, Di Cagno R, Tlais AZA, Cantatore V, Gobbetti M (2019) Fructose-rich niches traced the evolution of lactic acid bacteria toward fructophilic species. Crit Rev Microbiol 45:65–81

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick DA (2012) Horizontal gene transfer in fungi. FEMS Microbiol Lett 329:1–8

    Article  CAS  PubMed  Google Scholar 

  • Franco MEE, Wisecaver JH, Arnold AE, Ju Y-M, Slot JC, Ahrendt S, Moore LP, Eastman KE, Scott K, Konkel Z, Mondo SJ, Kuo A, Hayes RD, Haridas S, Andreopoulos B, Riley R, LaButti K, Pangilinan J, Lipzen A, Amirebrahimi M, Yan J, Adam C, Keymanesh K, Ng V, Louie K, Northen T, Drula E, Henrissat B, Hsieh H-M, Youens-Clark K, Lutzoni F, Miadlikowska J, Eastwood DC, Hamelin RC, Grigoriev IV, U’Ren JM (2022) Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. New Phytol 233:1317–1330

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    Article  CAS  PubMed  Google Scholar 

  • Galeote V, Novo M, Salema-Oom M, Brion C, Valério E, Gonçalves P, Dequin S (2010) FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology 156:3754–3761

    Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Gluck-Thaler E, Slot JC (2015) Dimensions of horizontal gene transfer in eukaryotic microbial pathogens. PLoS Pathog 11:e1005156

    Article  PubMed  PubMed Central  Google Scholar 

  • Gluck-Thaler E, Ralston T, Konkel Z, Ocampos CG, Ganeshan VD, Dorrance AE, Niblack TL, Wood CW, Slot JC, Lopez-Nicora HD, Vogan AA (2022) Giant starship elements mobilize accessory genes in fungal genomes. Mol Biol Evol 39

    Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    Article  CAS  PubMed  Google Scholar 

  • Gojković Z, Knecht W, Zameitat E, Warneboldt J, Coutelis JB, Pynyaha Y, Neuveglise C, Møller K, Löffler M, Piskur J (2004) Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol Gen Genomics 271:387–393

    Article  Google Scholar 

  • Gonçalves C, Gonçalves P (2019) Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts. Proc Natl Acad Sci U S A 116:22219–22228

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonçalves P, Gonçalves C (2022) Horizontal gene transfer in yeasts. Curr Opin Genet Dev 76:101950

    Article  PubMed  Google Scholar 

  • Gonçalves C, Coelho MA, Salema-Oom M, Gonçalves P (2016) Stepwise functional evolution in a fungal sugar transporter family. Mol Biol Evol 33:352–366

    Article  PubMed  Google Scholar 

  • Gonçalves C, Wisecaver JH, Kominek J, Oom MS, Leandro MJ, Shen X-X, Opulente DA, Zhou X, Peris D, Kurtzman CP, Hittinger CT, Rokas A, Gonçalves P (2018) Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. elife 7:e33034

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonçalves P, Gonçalves C, Brito PH, Sampaio JP (2020) The Wickerhamiella/Starmerella clade—a treasure trove for the study of the evolution of yeast metabolism. Yeast 37(4):313–320

    Google Scholar 

  • Grandaubert J, Dutheil JY, Stukenbrock EH (2019) The genomic determinants of adaptive evolution in a fungal pathogen. Evol Lett 3:299–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, Hooker J, Gibbons SM, Segurel L, Froment A, Mohamed RS, Fezeu A, Juimo VA, Lafosse S, Tabe FE, Girard C, Iqaluk D, Nguyen LTT, Shapiro BJ, Lehtimäki J, Ruokolainen L, Kettunen PP, Vatanen T, Sigwazi S, Mabulla A, Domínguez-Rodrigo M, Nartey YA, Agyei-Nkansah A, Duah A, Awuku YA, Valles KA, Asibey SO, Afihene MY, Roberts LR, Plymoth A, Onyekwere CA, Summons RE, Xavier RJ, Alm EJ (2021) Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184:2053–2067.e18

    Article  CAS  PubMed  Google Scholar 

  • Haase MAB, Kominek J, Opulente DA, Shen XX, LaBella AL, Zhou X, DeVirgilio J, Hulfachor AB, Kurtzman CP, Rokas A, Hittinger CT (2021) Repeated horizontal gene transfer of GALactose metabolism genes violates Dollo’s law of irreversible loss. Genetics 217

    Google Scholar 

  • Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4:1102–1115

    Google Scholar 

  • Hao W, Richardson AO, Zheng Y, Palmer JD (2010) Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc Natl Acad Sci U S A 107:21576–21581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison M-C, LaBella AL, Hittinger CT, Rokas A (2022) The evolution of the GALactose utilization pathway in budding yeasts. Trends Genet 38:97–106

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL, Lücking R, Heitman J, James TY (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum, 5, 5.4.10

    Google Scholar 

  • Heitman J (2010) Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe 8:86–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellborg L, Woolfit M, Arthursson-Hellborg M, Piškur J (2008) Complex evolution of the DAL5 transporter family. BMC Genomics 9:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Hittinger CT, Rokas A, Bai FY, Boekhout T, Gonçalves P, Jeffries TW, Kominek J, Lachance MA, Libkind D, Rosa CA, Sampaio JP, Kurtzman CP (2015) Genomics and the making of yeast biodiversity. Curr Opin Genet Dev 35:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J (2013) Horizontal gene transfer in eukaryotes: the weak-link model. BioEssays 35:868–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husnik F, McCutcheon JP (2017) Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol 16:67

    Article  PubMed  Google Scholar 

  • Ianiri G, Coelho Marco A, Ruchti F, Sparber F, McMahon Timothy J, Fu C, Bolejack M, Donovan O, Smutney H, Myler P, Dietrich F, Fox D, LeibundGut-Landmann S, Heitman J (2020) HGT in the human and skin commensal Malassezia: a bacterially derived flavohemoglobin is required for NO resistance and host interaction. Proc Natl Acad Sci 117:15884–15894

    Google Scholar 

  • Irwin NAT, Pittis AA, Richards TA, Keeling PJ (2022) Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat Microbiol 7:327–336

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  CAS  PubMed  Google Scholar 

  • Khaldi N, Collemare J, Lebrun M-H, Wolfe KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9:R18

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirsch R, Gramzow L, Theißen G, Siegfried BD, Ffrench-Constant RH, Heckel DG, Pauchet Y (2014) Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles. Insect Biochem Mol Biol 52:33–50

    Article  CAS  PubMed  Google Scholar 

  • Kominek J, Doering DT, Opulente DA, Shen XX, Zhou X, DeVirgilio J, Hulfachor AB, Groenewald M, McGee MA, Karlen SD, Kurtzman CP, Rokas A, Hittinger CT (2019) Eukaryotic Acquisition of a Bacterial Operon. Cell 176:1356–1366.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci U S A 99:14280–14285

    Google Scholar 

  • Kondrashov FA, Koonin EV, Morgunov IG, Finogenova TV, Kondrashova MN (2006) Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol Direct 1:31–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Ku C, Nelson-Sathi S, Roettger M, Garg S, Hazkani-Covo E, Martin WF (2015) Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc Natl Acad Sci 112:10139–10146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JS, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lacroix B, Citovsky V (2016) Transfer of DNA from bacteria to eukaryotes. mBio 7

    Google Scholar 

  • Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Bock R (2019) Rapid functional activation of a horizontally transferred eukaryotic gene in a bacterial genome in the absence of selection. Nucleic Acids Res 47:6351–6359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zhao J, Tang N, Sun H, Huang J (2018) Horizontal gene transfer from bacteria and plants to the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 9

    Google Scholar 

  • Li Y, Steenwyk JL, Chang Y, Wang Y, James TY, Stajich JE, Spatafora JW, Groenewald M, Dunn CW, Hittinger CT, Shen X-X, Rokas A (2021) A genome-scale phylogeny of the kingdom Fungi. Curr Biol 31:1653–1665.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu Z, Liu C, Shi Z, Pang L, Chen C, Chen Y, Pan R, Zhou W, Chen X-X, Rokas A, Huang J, Shen X-X (2022) HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 185(16):2975-2987

    Google Scholar 

  • Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 108:14539–14544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CS, Weinstein BN, Roy SW, Brown CM (2021) Analysis of fungal genomes reveals commonalities of intron gain or loss and functions in intron-poor species. Mol Biol Evol 38:4166–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind PA, Tobin C, Berg OG, Kurland CG, Andersson DI (2010) Compensatory gene amplification restores fitness after inter-species gene replacements. Mol Microbiol 75:1078–1089

    Article  CAS  PubMed  Google Scholar 

  • Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F, Goldman GH, Rokas A (2017) Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biol 15:e2003583

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang S, Li L, Yang T, Dong S, Wei T, Wu S, Liu Y, Gong Y, Feng X, Ma J, Chang G, Huang J, Yang Y, Wang H, Liu M, Xu Y, Liang H, Yu J, Cai Y, Zhang Z, Fan Y, Mu W, Sahu SK, Liu S, Lang X, Yang L, Li N, Habib S, Yang Y, Lindstrom AJ, Liang P, Goffinet B, Zaman S, Wegrzyn JL, Li D, Liu J, Cui J, Sonnenschein EC, Wang X, Ruan J, Xue J-Y, Shao Z-Q, Song C, Fan G, Li Z, Zhang L, Liu J, Liu Z-J, Jiao Y, Wang X-Q, Wu H, Wang E, Lisby M, Yang H, Wang J, Liu X, Xu X, Li N, Soltis PS, Van de Peer Y, Soltis DE, Gong X, Liu H, Zhang S (2022) The Cycas genome and the early evolution of seed plants. Nat Plants 8:389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Hallen-Adams HE, Lüli Y, Sgambelluri RM, Li X, Smith M, Yang ZL, Martin FM (2022) Genes and evolutionary fates of the amanitin biosynthesis pathway in poisonous mushrooms. Proc Natl Acad Sci 119:e2201113119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, **e X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RA, Chapman S, Coulson R, Coutinho PM, Danchin EG, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee YH, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Google Scholar 

  • Ma J, Wang S, Zhu X, Sun G, Chang G, Li L, Hu X, Zhang S, Zhou Y, Song C-P, Huang J (2022) Major episodes of horizontal gene transfer drove the evolution of land plants. Mol Plant 15:857–871

    Article  CAS  PubMed  Google Scholar 

  • Magwene PM, Kayıkçı Ö, Granek JA, Reininga JM, Scholl Z, Murray D (2011) Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proc Natl Acad Sci 108:1987–1992

    Google Scholar 

  • Marcet-Houben M, Gabaldon T (2010) Acquisition of prokaryotic genes by fungal genomes. Trends Genet 26:5–8

    Article  CAS  PubMed  Google Scholar 

  • Marcet-Houben M, Gabaldón T (2019) Evolutionary and functional patterns of shared gene neighbourhood in fungi. Nat Microbiol 4:2383–2392

    Article  PubMed  Google Scholar 

  • Marsit S, Mena A, Bigey F, Sauvage FX, Couloux A, Guy J, Legras JL, Barrio E, Dequin S, Galeote V (2015) Evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in wine yeasts. Mol Biol Evol 32:1695–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin WF (2017) Too much eukaryote LGT. BioEssays 39:1700115

    Article  Google Scholar 

  • Matriano DM, Alegado RA, Conaco C (2021) Detection of horizontal gene transfer in the genome of the choanoflagellate Sal**oeca rosetta. Sci Rep 11:5993

    Google Scholar 

  • McCarthy CGP, Fitzpatrick DA (2019) Pan-genome analyses of model fungal species. Microb Genom 5:e000243

    PubMed  PubMed Central  Google Scholar 

  • McDonald MC, Taranto AP, Hill E, Schwessinger B, Liu Z, Simpfendorfer S, Milgate A, Solomon PS, Pietro AD (2019) Transposon-mediated horizontal transfer of the host-specific virulence protein ToxA between three fungal wheat pathogens. MBio 10:e01515–e01519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta N, Baghela A (2021) Quorum sensing-mediated inter-specific conidial anastomosis tube fusion between Colletotrichum gloeosporioides and C. siamense. IMA Fungus 12:7

    Google Scholar 

  • Milner David S, Attah V, Cook E, Maguire F, Savory Fiona R, Morrison M, Müller Carolin A, Foster Peter G, Talbot Nicholas J, Leonard G, Richards Thomas A (2019) Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes. Proc Natl Acad Sci 116:5613–5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 15:756–771

    Article  PubMed  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    Article  CAS  PubMed  Google Scholar 

  • Morogovsky A, Handelman M, Kandil AA, Shadkchan Y, Osherov N, Goldman GH (2022) Horizontal gene transfer of triazole resistance in Aspergillus fumigatus. Microbiol Spectr 0:e01112–e01122

    Google Scholar 

  • Murphy CL, Youssef NH, Hanafy RA, Couger MB, Stajich JE, Wang Y, Baker K, Dagar SS, Griffith GW, Farag IF, Callaghan TM, Elshahed MS (2019) Horizontal gene transfer as an indispensable driver for evolution of neocallimastigomycota into a distinct gut-dwelling fungal lineage. Appl Environ Microbiol 85

    Google Scholar 

  • Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev 94:1443–1476

    Article  PubMed  Google Scholar 

  • Naranjo-Ortíz MA, Brock M, Brunke S, Hube B, Marcet-Houben M, Gabaldón T (2016) Widespread inter- and intra-domain horizontal gene transfer of d-amino acid metabolism enzymes in eukaryotes. Front Microbiol 7

    Google Scholar 

  • Nevoigt E, Fassbender A, Stahl U (2000) Cells of the yeast Saccharomyces cerevisiae are transformable by DNA under non-artificial conditions. Yeast 16:1107–1110

    Google Scholar 

  • Nguyen TA, Greig J, Khan A, Goh C, Jedd G (2018) Evolutionary novelty in gravity sensing through horizontal gene transfer and high-order protein assembly. PLoS Biol 16:e2004920

    Article  PubMed  PubMed Central  Google Scholar 

  • Nováková E, Moran NA (2011) Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. Mol Biol Evol 29:313–323

    Article  PubMed  Google Scholar 

  • Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras J-L, Wincker P, Casaregola S, Dequin S (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106:16333–16338

    Google Scholar 

  • Nowell RW, Almeida P, Wilson CG, Smith TP, Fontaneto D, Crisp A, Micklem G, Tunnacliffe A, Boschetti C, Barraclough TG (2018) Comparative genomics of bdelloid rotifers: insights from desiccating and nondesiccating species. PLoS Biol 16:e2004830

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  CAS  PubMed  Google Scholar 

  • Palazzo A, Lorusso P, Miskey C, Walisko O, Gerbino A, Marobbio CMT, Ivics Z, Marsano RM (2019) Transcriptionally promiscuous “blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes. Mob DNA 10:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Patron NJ, Waller RF, Cozijnsen AJ, Straney DC, Gardiner DM, Nierman WC, Howlett BJ (2007) Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol Biol 7:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauchet Y, Heckel DG (2013) The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc R Soc B Biol Sci 280:20131021

    Article  Google Scholar 

  • Perli T, Vos AM, Bouwknegt J, Dekker WJC, Wiersma SJ, Mooiman C, Ortiz-Merino RA, Daran JM, Pronk JT (2021) Identification of oxygen-independent pathways for pyridine nucleotide and coenzyme A synthesis in anaerobic fungi by expression of candidate genes in yeast. MBio 12:e0096721

    Article  PubMed  Google Scholar 

  • Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K, Llored A, Cruaud C, Labadie K, Aury J-M, Istace B, Lebrigand K, Barbry P, Engelen S, Lemainque A, Wincker P, Liti G, Schacherer J (2018) Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556:339–344

    Google Scholar 

  • Pombert JF, Haag KL, Beidas S, Ebert D, Keeling PJ (2015) The Ordospora colligata genome: evolution of extreme reduction in microsporidia and host-to-parasite horizontal gene transfer. MBio 6

    Google Scholar 

  • Qiu H, Yoon HS, Bhattacharya D (2013) Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes. Frontiers. Plant Sci 4

    Google Scholar 

  • Qiu H, Cai G, Luo J, Bhattacharya D, Zhang N (2016) Extensive horizontal gene transfers between plant pathogenic fungi. BMC Biol 14:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds HT, Vijayakumar V, Gluck-Thaler E, Korotkin HB, Matheny PB, Slot JC (2018) Horizontal gene cluster transfer increased hallucinogenic mushroom diversity. Evol Lett 2:88–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Richard GF (2020) Eukaryotic Pangenomes. In: Tettelin H, Medini D (eds) The pangenome: diversity, dynamics and evolution of genomes. Springer, Cham

    Google Scholar 

  • Richards TA, Talbot NJ (2013) Horizontal gene transfer in osmotrophs: playing with public goods. Nat Rev Microbiol 11:720–727

    Article  CAS  PubMed  Google Scholar 

  • Richards TA, Hirt RP, Williams BA, Embley TM (2003) Horizontal gene transfer and the evolution of parasitic protozoa. Protist 154:17–32

    Article  PubMed  Google Scholar 

  • Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ (2006) Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr Biol 16:1857–1864

    Article  CAS  PubMed  Google Scholar 

  • Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards TA, Leonard G, Soanes DM, Talbot NJ (2011a) Gene transfer into the fungi. Fungal Biol Rev 25:98–110

    Article  Google Scholar 

  • Richards TA, Soanes DM, Jones MDM, Vasieva O, Leonard G, Paszkiewicz K, Foster PG, Hall N, Talbot NJ (2011b) Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci U S A 108:15258–15263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rokas A (2022) Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 7:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokas A, Wisecaver JH, Lind AL (2018) The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 16:731–744

    Article  CAS  PubMed  Google Scholar 

  • Ropars J, Rodríguez de la Vega RC, López-Villavicencio M, Gouzy J, Sallet E, Dumas É, Lacoste S, Debuchy R, Dupont J, Branca A, Giraud T (2015) Adaptive horizontal gene transfers between multiple cheese-associated fungi. Curr Biol 25:2562–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savory F, Leonard G, Richards TA (2015) The role of horizontal gene transfer in the evolution of the oomycetes. PLoS Pathog 11:e1004805

    Article  PubMed  PubMed Central  Google Scholar 

  • Savory FR, Milner DS, Miles DC, Richards TA (2018) Ancestral function and diversification of a horizontally acquired oomycete carboxylic acid transporter. Mol Biol Evol 35:1887–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönknecht G, Chen W-H, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Bräutigam A, Baker BJ, Banfield JF, Garavito RM, Carr K, Wilkerson C, Rensing SA, Gagneul D, Dickenson NE, Oesterhelt C, Lercher MJ, Weber APM (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210

    Article  PubMed  Google Scholar 

  • Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese GC (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst 147:237–246

    Article  Google Scholar 

  • Selman M, Pombert JF, Solter L, Farinelli L, Weiss LM, Keeling P, Corradi N (2011) Acquisition of an animal gene by microsporidian intracellular parasites. Curr Biol 21:R576–R577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT, Boudouris JT, Schneider RM, Langdon QK, Ohkuma M, Endoh R, Takashima M, Manabe RI, Cadez N, Libkind D, Rosa CA, DeVirgilio J, Hulfachor AB, Groenewald M, Kurtzman CP, Hittinger CT, Rokas A (2018) Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175:1533–1545.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X-X, Steenwyk JL, LaBella AL, Opulente DA, Zhou X, Kominek J, Li Y, Groenewald M, Hittinger CT, Rokas A (2020) Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. Sci Adv 6:eabd0079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shterzer N, Mizrahi I (2015) The animal gut as a melting pot for horizontal gene transfer. Can J Microbiol 61:603–605

    Article  CAS  PubMed  Google Scholar 

  • Sibbald SJ, Eme L, Archibald JM, Roger AJ (2020) Lateral gene transfer mechanisms and pan-genomes in eukaryotes. Trends Parasitol 36:927–941

    Article  CAS  PubMed  Google Scholar 

  • Silva M, Pontes A, Franco-Duarte R, Soares P, Sampaio JP, Sousa MJ, Brito PH (2022) A glimpse at an early stage of microbe domestication revealed in the variable genome of Torulaspora delbrueckii, an emergent industrial yeast. Mol Ecol

    Google Scholar 

  • Sinha S, Flibotte S, Neira M, Formby S, Plemenitaš A, Cimerman NG, Lenassi M, Gostinčar C, Stajich JE, Nislow C (2017) Insight into the recent genome duplication of the halophilic yeast Hortaea werneckii: combining an improved genome with gene expression and chromatin structure. G3 (Bethesda, MD) 7:2015–2022

    Google Scholar 

  • Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, Gibbs RA, Moran NA (2014) Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol 31:857–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slot JC, Hibbett DS (2007) Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS One 2:e1097

    Article  PubMed  PubMed Central  Google Scholar 

  • Slot JC, Rokas A (2010) Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi. Proc Natl Acad Sci U S A 107:10136–10141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139

    Article  CAS  PubMed  Google Scholar 

  • Soanes D, Richards TA (2014) Horizontal gene transfer in eukaryotic plant pathogens. Annu Rev Phytopathol 52:583–614

    Article  CAS  PubMed  Google Scholar 

  • Stajich JE (2017) Fungal genomes and insights into the evolution of the kingdom. Microbiol Spectr 5

    Google Scholar 

  • Stalder L, Oggenfuss U, Mohd-Assaad N, Croll D (2022) The population genetics of adaptation through copy number variation in a fungal plant pathogen. Mol Ecol

    Google Scholar 

  • Steensels J, Gallone B, Verstrepen KJ (2021) Interspecific hybridization as a driver of fungal evolution and adaptation. Nat Rev Microbiol 19:485–500

    Article  CAS  PubMed  Google Scholar 

  • Steenwyk JL, Rokas A (2018) Copy number variation in fungi and its implications for wine yeast genetic diversity and adaptation. Front Microbiol 9

    Google Scholar 

  • Stukenbrock EH (2016) The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology 106:104–112

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Li T, **ao J, Liu L, Zhang P, Murphy RW, He S, Huang D (2016) Contribution of multiple inter-kingdom horizontal gene transfers to evolution and adaptation of amphibian-killing chytrid, batrachochytrium dendrobatidis. Front Microbiol 7

    Google Scholar 

  • Tabima JF, Trautman IA, Chang Y, Wang Y, Mondo S, Kuo A, Salamov A, Grigoriev IV, Stajich JE, Spatafora JW (2020) Phylogenomic analyses of non-dikarya fungi supports horizontal gene transfer driving diversification of secondary metabolism in the amphibian gastrointestinal symbiont, basidiobolus. G3 Genes|Genomes|Genetics 10:3417–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  CAS  PubMed  Google Scholar 

  • Todd RT, Selmecki A (2020) Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. elife 9

    Google Scholar 

  • Tsavkelova E, Oeser B, Oren-Young L, Israeli M, Sasson Y, Tudzynski B, Sharon A (2012) Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet Biol 49:48–57

    Article  CAS  PubMed  Google Scholar 

  • Urquhart AS, Chong NF, Yang Y, Idnurm A (2022) A large transposable element mediates metal resistance in the fungus Paecilomyces variotii. Curr Biol 32:937–950.e5

    Article  CAS  PubMed  Google Scholar 

  • Urquhart AS, Vogan AA, Gardiner DM, Idnurm A (2023) Starships are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases. Proc Natl Acad Sci U S A 120 (15):e2214521120

    Google Scholar 

  • Venkatesh A, Murray AL, Coughlan AY, Wolfe KH (2021) Giant GAL gene clusters for the melibiose-galactose pathway in Torulaspora. Yeast 38:117–126

    Article  CAS  PubMed  Google Scholar 

  • Wagner A, Whitaker RJ, Krause DJ, Heilers JH, van Wolferen M, van der Does C, Albers SV (2017) Mechanisms of gene flow in archaea. Nat Rev Microbiol 15:492–501

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Youssef NH, Couger MB, Hanafy RA, Elshahed MS, Stajich JE (2019) Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems 4

    Google Scholar 

  • Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, **ao G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu SS, Bai G, Nevo E, Gao C, Ohm H, Kong L (2020) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368

    Google Scholar 

  • Widen SA, Campo Bes I, Koreshova A, Krogull D, Burga A (2022) Virus-like transposons cross the species barrier and drive the evolution of genetic incompatibilities. bioRxiv 2022.07.12.499685

    Google Scholar 

  • Wiersma SJ, Mooiman C, Giera M, Pronk JT (2020) Squalene-tetrahymanol cyclase expression enables sterol-independent growth of Saccharomyces cerevisiae. Appl Environ Microbiol 86

    Google Scholar 

  • Wijayawardena BK, Minchella DJ, DeWoody JA (2013) Hosts, parasites, and horizontal gene transfer. Trends Parasitol 29:329–338

    Article  CAS  PubMed  Google Scholar 

  • Wisecaver JH, Rokas A (2015) Fungal metabolic gene clusters-caravans traveling across genomes and environments. Front Microbiol 6:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wisecaver JH, Alexander WG, King SB, Hittinger CT, Rokas A (2016) Dynamic evolution of nitric oxide detoxifying flavohemoglobins, a family of single-protein metabolic modules in bacteria and eukaryotes. Mol Biol Evol 33:1979–1987

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH (2015) Origin of the yeast whole-genome duplication. PLoS Biol 13:e1002221

    Article  PubMed  PubMed Central  Google Scholar 

  • Wybouw N, Dermauw W, Tirry L, Stevens C, Grbić M, Feyereisen R, Van Leeuwen T (2014) A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. elife 3:e02365

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE, Jones S, Clarke CR, Liu S, Su C, Zhang H, Altman NS, Schuster SC, Timko MP, Yoder JI, Westwood JH, dePamphilis CW (2016) Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proc Natl Acad Sci U S A 113:E7010–E7019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Zhu B, Feng H, Huang L (2016) Horizontal gene transfer drives adaptive colonization of apple trees by the fungal pathogen Valsa mali. Sci Rep 6:33129

    Google Scholar 

  • Zhang Q, Chen X, Xu C, Zhao H, Zhang X, Zeng G, Qian Y, Liu R, Guo N, Mi W, Meng Y, Leger RJS, Fang W (2019) Horizontal gene transfer allowed the emergence of broad host range entomopathogens. Proc Natl Acad Sci 116:7982–7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Beltrán JF, Brito IL (2021) Functions predict horizontal gene transfer and the emergence of antibiotic resistance. Science. Advances 7:eabj5056

    CAS  Google Scholar 

  • Zhu B, Zhou Q, **e G, Zhang G, Zhang X, Wang Y, Sun G, Li B, ** G (2012) Interkingdom gene transfer may contribute to the evolution of phytopathogenicity in Botrytis cinerea. Evol Bioinformatics Online 8:105–117

    Google Scholar 

  • Zoolkefli FIRM, Moriguchi K, Cho Y, Kiyokawa K, Yamamoto S, Suzuki K (2021) Isolation and analysis of donor chromosomal genes whose deficiency is responsible for accelerating bacterial and trans-kingdom conjugations by IncP1 T4SS machinery. Front Microbiol 12:620535–620535

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in A.R.’s lab is supported by grants from the National Science Foundation (DEB-2110404), the National Institutes of Health/National Institute of Allergy and Infectious Diseases (R56 AI146096 and R01 AI153356), and the Burroughs Wellcome Fund. Research in C.T.H.’s lab is supported by the National Science Foundation (DEB-1442148 and DEB-2110403), in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-SC0018409), the USDA National Institute of Food and Agriculture (Hatch Project 1020204), and an H. I. Romnes Faculty Fellowship from the Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.

Conflict of Interest Statement

A.R. is a scientific consultant for LifeMine Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carla Gonçalves or Antonis Rokas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonçalves, C., Hittinger, C.T., Rokas, A. (2024). Horizontal Gene Transfer in Fungi and Its Ecological Importance. In: Hsueh, YP., Blackwell, M. (eds) Fungal Associations. The Mycota, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-41648-4_3

Download citation

Publish with us

Policies and ethics

Navigation