Reliability of Ring Oscillator PUFs with Reduced Helper Data

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2023)

Abstract

Enhancing the reliability of natively unstable Physically Unclonable Functions (PUFs) is a major requirement when the PUF is to generate secret identifiers like cryptographic keys. One traditional method is to rely on an addition of a public word: the Helper Data. However, it involves extra complexity and constitutes a vulnerability against attacks manipulating it. In this work, we show that for PUFs based on oscillations, such as Loop-PUFs (LPUF) can simultaneously increase the stability of the PUFs responses and reduce the required amount of helper data to decrease the complexity and increase the security. We proceed in two steps: First, we improve the reliability of the LPUF using dynamically determined repeated measurements and decision process. The number of repetitions per challenge is automatically tuned according to its reliability level and measurement window. Second, we investigate lightweight helper data (less than one byte). Experimental validation of our approach is carried out on 640 LPUFs to characterize the PUF reliability under different temperatures. This provides the assessment of the probability that a given Key Error Rate (KER) is achieved. This, in turn, yields the probability that there is an oscillator with arbitrarily low KER among any given number of oscillators. Performances remain notably stable when subject to increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 48.14
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 62.05
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The power of a statistical test is the probability that it correctly rejects \(H_0\).

References

  1. Arikan, E.: An inequality on guessing and its application to sequential decoding. IEEE Trans. Inf. Theory 42(1), 99–105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bather, J.: Bayes procedures for deciding the sign of a normal mean (1962)

    Google Scholar 

  3. Becker, G.T.: Robust fuzzy extractors and helper data manipulation attacks revisited: theory versus practice. IEEE Trans. Dependable Secure Comput. 16, 783–795 (2019)

    Article  Google Scholar 

  4. Breakwell, J., Chernoff, H.: Sequential tests for the mean of a normal distribution. II. (large t) (1964)

    Google Scholar 

  5. Che, W., Plusquellic, J., Bhunia, S.: A non-volatile memory based physically unclonable function without helper data. In: 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 148–153. IEEE (2014)

    Google Scholar 

  6. Cherif, Z., Danger, J.L., Guilley, S., Bossuet, L.: An easy-to-design PUF based on a single oscillator: the loop PUF. In: 15th Euromicro Conference on Digital System Design, DSD 2012, Çeşme, Izmir, Turkey, 5–8 September 2012, pp. 156–162. IEEE Computer Society (2012). https://doi.org/10.1109/DSD.2012.22

  7. Chernoff, H.: Sequential tests for the mean of a normal distribution (1961)

    Google Scholar 

  8. Chernoff, H.: Sequential tests for the mean of a normal distribution. III. (small t) (1965)

    Google Scholar 

  9. Danger, J.L., Guilley, S., Schaub, A.: Two-metric helper data for highly robust and secure delay PUFs. In: IEEE 8th International Workshop on Advances in Sensors and Interfaces, IWASI 2019, Otranto, Italy, 13–14 June 2019, pp. 184–188. IEEE (2019). https://doi.org/10.1109/IWASI.2019.8791249

  10. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper data algorithms for PUF-based key generation: overview and analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(6), 889–902 (2015). https://doi.org/10.1109/TCAD.2014.2370531

    Article  Google Scholar 

  11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  13. Ekström, E., Vaicenavicius, J.: Bayesian sequential testing of the drift of a brownian motion (2015). https://doi.org/10.48550/ARXIV.1509.00675. https://arxiv.org/abs/1509.00675

  14. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. Cryptology ePrint Archive, Paper 2013/416 (2013). https://eprint.iacr.org/2013/416

  15. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: 18th Annual Computer Security Applications Conference, Proceedings, pp. 149–160 (2002). https://doi.org/10.1109/CSAC.2002.1176287

  16. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 2002, pp. 148–160. Association for Computing Machinery, New York (2002). https://doi.org/10.1145/586110.586132

  17. de Groot, J., Škorić, B., de Vreede, N., Linnartz, J.P.: Information leakage of continuous-source zero secrecy leakage helper data schemes. IACR Cryptology ePrint Archive 2012, 566 (2012). http://eprint.iacr.org/2012/566

  18. de Groot, J., Škorić, B., de Vreede, N., Linnartz, J.-P.: Quantization in zero leakage helper data schemes. EURASIP J. Adv. Signal Process. 2016, 54 (2016). https://doi.org/10.1186/s13634-016-0353-z

    Article  Google Scholar 

  19. Günü, O., Schaefer, R.F.: Low-complexity and reliable transforms for physical unclonable functions. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2807–2811 (2020). https://doi.org/10.1109/ICASSP40776.2020.9053107

  20. Herder, C., Ren, L., van Dijk, M., Yu, M.D., Devadas, S.: Trapdoor computational fuzzy extractors and stateless cryptographically-secure physical unclonable functions. IEEE Trans. Dependable Secure Comput. 14(1), 65–82 (2017). https://doi.org/10.1109/TDSC.2016.2536609

    Article  Google Scholar 

  21. Herkle, A., Becker, J., Ortmanns, M.: An Arbiter PUF employing eye-opening oscillation for improved noise suppression. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2018). https://doi.org/10.1109/ISCAS.2018.8351361

  22. Van Herrewege, A., et al.: Reverse fuzzy extractors: enabling lightweight mutual authentication for PUF-enabled RFIDs. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 374–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_27

    Chapter  Google Scholar 

  23. Hsiao, M.Y.: A class of optimal minimum odd-weight-column SEC-DED codes. IBM J. Res. Dev. 14(4), 395–401 (1970)

    Article  Google Scholar 

  24. Ignatenko, T., Willems, F.M.J.: Information leakage in fuzzy commitment schemes. IEEE Trans. Inf. Forensics Secur. 5, 337–348 (2010)

    Article  Google Scholar 

  25. Immler, V., Hiller, M., Liu, Q., Lenz, A., Wachter-Zeh, A.: Variable-length bit map** and error-correcting codes for higher-order alphabet PUFs. In: Ali, S.S., Danger, J.-L., Eisenbarth, T. (eds.) SPACE 2017. LNCS, vol. 10662, pp. 190–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71501-8_11

    Chapter  MATH  Google Scholar 

  26. Julien, B.: https://github.com/JulienBeg/Reliability-Ring-Oscillator-PUF

  27. Karlin, S., Rubin, H.: Distributions possessing a monotone likelihood ratio. J. Am. Stat. Assoc. 51(276), 637–643 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  28. Linnartz, J.-P., Tuyls, P.: New shielding functions to enhance privacy and prevent misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44887-X_47

    Chapter  MATH  Google Scholar 

  29. Maiti, A., Schaumont, P.: Improving the quality of a physical unclonable function using configurable ring oscillators. In: 2009 International Conference on Field Programmable Logic and Applications, pp. 703–707 (2009). https://doi.org/10.1109/FPL.2009.5272361

  30. Maiti, A., Schaumont, P.: Improved ring oscillator PUF: an FPGA-friendly secure primitive. J. Cryptol. 24(2), 375–397 (2010). https://doi.org/10.1007/s00145-010-9088-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Maringer, G., et al.: Analysis of communication channels related to physical unclonable functions. ar**v preprint ar**v:2112.02198 (2021)

  32. Massey, J.L.: Guessing and entropy. In: Proceedings of 1994 IEEE International Symposium on Information Theory, p. 204. IEEE (1994)

    Google Scholar 

  33. Rioul, O.: Variations on a theme by massey. IEEE Trans. Inf. Theory 68(5), 2813–2828 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rioul, O., Solé, P., Guilley, S., Danger, J.L.: On the entropy of physically unclonable functions. In: IEEE International Symposium on Information Theory, ISIT (2016)

    Google Scholar 

  35. Schaub, A., Danger, J.L., Guilley, S., Rioul, O.: An improved analysis of reliability and entropy for delay PUFs. In: 21st Euromicro Conference on Digital System Design (2018)

    Google Scholar 

  36. Solé, P., Cheng, W., Guilley, S., Rioul, O.: Bent sequences over hadamard codes for physically unclonable functions. In: 2021 IEEE International Symposium on Information Theory (ISIT), pp. 801–806 (2021). https://doi.org/10.1109/ISIT45174.2021.9517752

  37. Stangherlin, K., Wu, Z., Patel, H., Sachdev, M.: Enhancing Strong PUF Security with Non-monotonic Response Quantization (2022). https://doi.org/10.48550/ARXIV.2206.03440. https://arxiv.org/abs/2206.03440

  38. Stanko, T., Nur Andini, F., Skoric, B.: Optimized quantization in zero leakage helper data systems. Trans. Info. For. Sec. 12(8), 1957–1966 (2017). https://doi.org/10.1109/TIFS.2017.2697840

  39. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: 2007 44th ACM/IEEE Design Automation Conference, pp. 9–14 (2007)

    Google Scholar 

  40. Tebelmann, L., Danger, J.-L., Pehl, M.: Self-secured PUF: protecting the loop PUF by masking. In: Bertoni, G.M., Regazzoni, F. (eds.) COSADE 2020. LNCS, vol. 12244, pp. 293–314. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68773-1_14

    Chapter  MATH  Google Scholar 

  41. Wald, A., Wald, A.: The sequential probability ratio test for testing a simple hypothesis H0 against a single alternative H1. Seq. Anal. 37, 70 (1947)

    Google Scholar 

  42. Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. Ann. Math. Stat. 326–339 (1948)

    Google Scholar 

  43. Wang, W.C., Yona, Y., Diggavi, S., Gupta, P.: LEDPUF: stability-guaranteed physical unclonable functions through locally enhanced defectivity. In: 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 25–30. IEEE (2016)

    Google Scholar 

  44. Yin, C.E.D., Qu, G.: LISA: maximizing RO PUF’s secret extraction. In: 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 100–105 (2010). https://doi.org/10.1109/HST.2010.5513105

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Béguinot .

Editor information

Editors and Affiliations

A Experimental Setup

A Experimental Setup

Fig. 8.
figure 8

Initial experimental setup with 6 boards at room temperature.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Béguinot, J., Cheng, W., Danger, JL., Guilley, S., Rioul, O., Yli-Mäyry, V. (2023). Reliability of Ring Oscillator PUFs with Reduced Helper Data. In: Shikata, J., Kuzuno, H. (eds) Advances in Information and Computer Security. IWSEC 2023. Lecture Notes in Computer Science, vol 14128. Springer, Cham. https://doi.org/10.1007/978-3-031-41326-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41326-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41325-4

  • Online ISBN: 978-3-031-41326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation