Application of Cyclodextrin-Based Nanosponges in Soil and Aquifer Bioremediation

  • Chapter
  • First Online:
Nanosponges for Environmental Remediation

Abstract

Bioremediation of wastewater contaminated by organic/inorganic pollutants has become the biggest challenge and is now seen as an essential requisite worldwide. The conventional or the present methods/techniques employed for water remediation have their limitations and drawbacks. In quest of finding a solution to this hard-pressing necessity, various groups and scientists have developed one such material which could provide a solution to improve the process of soil bioremediation and wastewater remediation which is the use of cyclodextrins (CDs) and CD-based nanosponges. Nanosponges are tiny structures composed of porous material which generally binds or absorbs concomitants. Especially cyclodextrin based nanosponges have been found to be very efficient in the elimination of varied pollutants from different soil and wastewater. The nanosponges synthesized under controlled conditions may be designed and tuned for the removal of particular contaminants from the sources. These pollutants include heavy metals, small organic molecules (including pharmaceutical waste), and dyes from industries. Besides, being efficient and specific to pollutants, nanosponges do not impose any toxicity on living species. Various groups of researchers have documented that nanosponges can be used for the process of bioremediation and hence as a great alternative to conventional technologies. Other than their usage in environmental bioremediation, nanosponges have a variety of applications in day-to-day life like in cosmetics, pharmaceuticals, bio-medicinal applications, catalysis, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-MIB:

2-Methylisoborneol

BET:

Brunauer-Emmett-Teller

BTEX:

Benzene, toluene, ethylbenzene and xylene

CD:

Cyclodextrin

CGTases:

Cycloglycosyl transferase amylases

CDNS:

Cyclodextrin-based nanosponges

CuAAC:

Cu-catalyzed azido-alkyne cycloaddition

DBPs:

Disinfection by products

DLS:

Dynamic light scattering

DMSO:

Dimethyl sulfoxide

DPC:

Diphenyl carbonate

EDC:

Endocrine disrupting compounds

FTIR:

Fourier transform infrared

GC/MS:

Gas chromatography–mass spectrometry

GAC:

Granular activated carbon

HNTs:

Halloysite nanotubes

HNT-CD:

Halloysite–cyclodextrin nanosponges

HPBCD:

Hydroxypropyl-β-cyclodextrin

HPBCD-NP:

Hydroxypropyl-β-cyclodextrin nonylphenol

MN-PCDP:

Magnetic nanoparticles porous β-CD polymer

MTBE:

Methyl tert-butyl ether

NOM:

Natural organic matter

NP:

Nonylphenol

NPEs:

Nonylphenol ethoxylates

PAHs:

Polyaromatic hydrocarbons

PAN:

1-(2-Pyridylazo) 2-napthol

PBDEs:

Polybrominated diphenyls

PCBs:

Polychlorinated biphenyls

SEM:

Scanning electron microscopy

SERS:

Surface-enhanced Raman spectroscopy

SPE:

Solid phase extraction

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analyzer

USEPA:

United States Environmental Protection Agency

XRD:

X-ray diffraction

References

  1. Utzeri, G., Matias, P. M. C., Murtinho, D., & Valente, A. J. M. (2022). Cyclodextrin-based nanosponges: Overview and opportunities. Frontiers in Chemistry, 10(10). https://doi.org/10.3389/fchem.2022.859406

  2. Baglieri, A., Gennari, M., Arena, M., & Abbate, C. (2011). The adsorption and degradation of chlorpyriphos-methyl, pendimethalin and metalaxyl in solid urban waste compost. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 46, 454–460. https://doi.org/10.1080/03601234.2011.583841

    Article  CAS  Google Scholar 

  3. Baglieri, A., Nègre, M., Trotta, F., et al. (2013). Organo-clays and nanosponges for acquifer bioremediation: Adsorption and degradation of triclopyr. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 48, 784–792. https://doi.org/10.1080/03601234.2013.780943

    Article  CAS  Google Scholar 

  4. Loftsson, T., Össurardóttir, Í. B., Thorsteinsson, T., et al. (2005). Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: Effect of ionization and polymers. Journal of Inclusion Phenomena, 52, 109–117. https://doi.org/10.1007/s10847-004-6048-3

    Article  CAS  Google Scholar 

  5. Sicard, P. J., & Saniez, M. H. (1987). Biosynthesis of cycloglycosyl transferase and obtention of its enzymatic reaction products. In D. Duchene (Ed.), Cyclodextrins and their industrial uses (pp. 75–103). Editions de Sante.

    Google Scholar 

  6. Saenger, W., Jacob, J., Gessler, K., et al. (1998). Structures of the common cyclodextrins and their larger analoguess beyond the doughnut. Chemical Reviews, 98, 1787–1802. https://doi.org/10.1021/cr9700181

    Article  CAS  Google Scholar 

  7. Fülöp, Z., Kurkov, S. V., Nielsen, T. T., et al. (2012). Self-assembly of cyclodextrins: Formation of cyclodextrin polymer based nanoparticles. Journal of Drug Delivery Science and Technology, 22, 215–221. https://doi.org/10.1016/S1773-2247(12)50032-8

    Article  Google Scholar 

  8. Sherje, A.P., Dravyakar, B.R., Kadam, D., & Jadhav, M. (2017). Cyclodextrin-based nanosponges: A critical review. Carbohydrate Polymers, 173, 37–49. https://doi.org/10.1016/j.carbpol.2017.05.086

  9. Bikádi, Z., Iványi, R., Szente, L., et al. (2007). Cyclodextrin complexes: Chiral recognition and complexation behaviour. Journal of Molecular Structure, 993, 376–381. https://doi.org/10.1016/j.molstruc.2010.11.068

    Article  CAS  Google Scholar 

  10. Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Journal of Pharmaceutical Sciences, 85, 1017–1025. https://doi.org/10.1021/js950534b

    Article  CAS  Google Scholar 

  11. Carneiro, S. B., Duarte, F. Í. C., et al. (2019). Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches. International Journal of Molecular Sciences, 20(3), 642. https://doi.org/10.3390/ijms20030642

  12. Gabelica, V., Galic, N., & De Pauw, E. (2002). On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry. Journal of the American Society for Mass Spectrometry, 13, 946–953. https://doi.org/10.1016/S1044-0305(02)00416-6

    Article  CAS  Google Scholar 

  13. Loftsson, T., Másson, M., & Sigurjónsdóttir, J. F. (1999). Methods to enhance the complexation efficiency of cyclodextrins. STP Pharma Sciences, 9, 237–242.

    CAS  Google Scholar 

  14. Pitha, J., & Hoshino, T. (1992). Effects of ethanol on formation of inclusion complexes of hydroxypropylcyclodextrins with testosterone or with methyl orange. International Journal of Pharmaceutics, 80, 243–251. https://doi.org/10.1016/0378-5173(92)90281-6

  15. Morillo, E., & Villaverde, J. (2017). Advanced technologies for the remediation of pesticide-contaminated soils. Science of the Total Environment, 586, 576–597. https://doi.org/10.1016/j.scitotenv.2017.02.020

  16. Gruiz, K., Meggyes, T., & Fenyvesi, É. (2019). Engineering tools for environmental risk management: Risk reduction technologies and case studies. CRC Press. https://doi.org/10.1201/b20405

  17. Ginés, J. M., Pérez-Martínez, J. I., Arias, M. J., et al. (1996). Inclusion of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) with β-cyclodextrin by different processing methods. Chemosphere, 33, 321–334. https://doi.org/10.1016/0045-6535(96)00175-0

  18. Villaverde, J., Pérez-Martı́nez, J. I., Maqueda, C., et al. (2005). Inclusion complexes of α- and γ-cyclodextrins and the herbicide norflurazon: I. Preparation and characterisation. II. Enhanced solubilisation and removal from soils. Chemosphere, 60, 656–664. https://doi.org/10.1016/j.chemosphere.2005.01.030

  19. Chen, F., Yang, B., Ma, J., et al. (2016). Decontamination of electronic waste-polluted soil by ultrasound-assisted soil washing. Environmental Science and Pollution Research, 23, 20331–20340. https://doi.org/10.1007/s11356-016-7271-3

    Article  CAS  Google Scholar 

  20. Morillo, E., Madrid, F., Lara-Moreno, A., & Villaverde, J. (2020). Soil bioremediation by cyclodextrins. A review. International Journal of Pharmaceutics, 591, 119943. https://doi.org/10.1016/j.ijpharm.2020.119943

  21. Sánchez-Trujillo, M. A., Morillo, E., Villaverde, J., & Lacorte, S. (2013). Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil. Environmental Pollution, 178, 52–58. https://doi.org/10.1016/j.envpol.2013.02.029

    Article  CAS  Google Scholar 

  22. Lara-Moreno, A., Morillo, E., Merchán, F. et al. (2022). Bioremediation of a trifluralin contaminated soil using bioaugmentation with novel isolated bacterial strains and cyclodextrin. Science of The Total Environment, 840. https://doi.org/10.1016/j.scitotenv.2022.156695

  23. Villaverde, J., Rubio-Bellido, M., Lara-Moreno, A. et al. (2018). Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. Chemosphere, 193, 118–125. https://doi.org/10.1016/j.chemosphere.2017.10.172

  24. Hauser, K., & Matthes, J. (2017). Medical students’ medication communication skills regarding drug prescription—A qualitative analysis of simulated physician-patient consultations. European Journal of Clinical Pharmacology, 73, 429–435. https://doi.org/10.1007/s00228-016-2192-0

    Article  Google Scholar 

  25. Jiradecha, C. (2000). Removal of naphthalene and 2, 4-dinitrotoluene from soils by using carboxymethyl-β-cyclodextrin. Kasetsart Journal (Natural Science), 34, 171–178. https://li01.tci-thaijo.org/index.php/anres/article/view/240388

  26. Gruiz, K., Fenyvesi, É., Kriston, É., et al. (1996). Potential use of cyclodextrins in soil bioremediation. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 25, 233–236. https://doi.org/10.1007/BF01041576

    Article  CAS  Google Scholar 

  27. Bardi, L., Ricci, R., & Marzona, M. (2003). In situ bioremediation of a hydrocarbon polluted site with cyclodextrin as a coadjuvant to increase bioavailability. Water, Air, and Soil Pollution: Focus, 3, 15–23. https://doi.org/10.1023/A:1023946205178

    Article  CAS  Google Scholar 

  28. Loftsson, T., Matthíasson, K., & Másson, M. (2003). The effects of organic salts on the cyclodextrin solubilization of drugs. International Journal of Pharmaceutics, 262, 101–107. https://doi.org/10.1016/S0378-5173(03)00334-X

    Article  CAS  Google Scholar 

  29. Zhao, D., Liao, K., Ma, X., & Yan, X. (2002). Study of the supramolecular inclusion of β-cyclodextrin with andrographolide. Journal of Inclusion Phenomena, 43, 259–264. https://doi.org/10.1023/A:1021223407297

    Article  CAS  Google Scholar 

  30. Bikádi, Z., Kurdi, R., Balogh, S. et al. (2006). Aggregation of cyclodextrins as an important factor to determine their complexation behavior. Chemistry and biodiversity, 3, 1266–1278. https://doi.org/10.1002/cbdv.200690129

  31. Brochsztain, S., & Politi, M. J. (1999). Solubilization of 1,4,5,8-naphthalenediimides and 1,8-naphthalimides through the formation of novel host−guest complexes with α-cyclodextrin. Langmuir, 15, 4486–4494. https://doi.org/10.1021/la9817157

    Article  CAS  Google Scholar 

  32. Loftsson, T., Magnúsdóttir, A., Másson, M., & Sigurjónsdóttir, J. F. (2002a). Self‐Association and Cyclodextrin Solubilization of Drugs. Journal of Pharmaceutical Sciences, 91, 2307–2316. https://doi.org/10.1002/jps.10226

  33. Loftsson, T., Másson, M., & Sigurdsson, H. H. (2002b). Cyclodextrins and drug permeability through semi-permeable cellophane membranes. International Journal of Pharmaceutics, 232, 35–43. https://doi.org/10.1016/S0378-5173(01)00895-X

  34. Trotta, F., Zanetti, M., & Cavalli, R. (2012). Cyclodextrin-based nanosponges as drug carriers. Beilstein Journal of Organic Chemistry, 8, 2091–2099. https://doi.org/10.3762/bjoc.8.235

    Article  CAS  Google Scholar 

  35. Li, D., & Ma, M. (2000). Nanosponges for water purification. Clean Products and Processes, 2, 112–116. https://doi.org/10.1007/s100980000061

    Article  Google Scholar 

  36. Zain, N. N. M., Raoov, M., Abu Bakar, N. K., & Mohamad, S. (2015). Cyclodextrin modified ionic liquid material as a modifier for cloud point extraction of phenolic compounds using spectrophotometry. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 84, 137–152. https://doi.org/10.1007/s10847-015-0591-y

    Article  CAS  Google Scholar 

  37. Rima, J., & Assaker, K. (2013). B-cyclodextrin polyurethanes copolymerised with beetroot fibers (bio-polymer), for the removal of organic and inorganic contaminants from water. Journal of Food Research, 2, 150. https://doi.org/10.5539/jfr.v2n1p150

  38. Malinga, S. P., Arotiba, O. A., Krause, R. W. M., et al. (2013). Cyclodextrin-dendrimer functionalized polysulfone membrane for the removal of humic acid in water. Journal of Applied Polymer Science, 130, 4428–4439. https://doi.org/10.1002/app.39728

    Article  CAS  Google Scholar 

  39. Mbuli, B. S. (2010). The polymerization of cyclodextrins modified with silicon (Si) and titanium (Ti) based compounds for the removal and degradation of organic contaminants in water (p. 28376725). University of Johannesburg (South Africa) ProQuest Dissertations Publishing

    Google Scholar 

  40. Rizzi, V., Gubitosa, J., Signorile, R., et al. (2021). Cyclodextrin nanosponges as adsorbent material to remove hazardous pollutants from water: The case of ciprofloxacin. Chemical Engineering Journal, 411. https://doi.org/10.1016/j.cej.2021.128514

  41. Mamba, B. B., Krause, R. W., Malefetse, T. J., et al. (2009). Humic acid as a model for natural organic matter (NOM) in the removal of odorants from water by cyclodextrin polyurethanes. African Journal online, 35. https://doi.org/10.4314/wsa.v35i1.76648

  42. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4, 361–377. https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  43. Gunatilake, S. K. (2015). Methods of removing heavy metals from industrial wastewater (JMESS). Methods, 1(1), 14

    Google Scholar 

  44. Crini, G., & Morcellet, M. (2002). Synthesis and applications of adsorbents containing cyclodextrins. Journal of Separation Science, 25, 789–813. https://doi.org/10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J

  45. Renard, E., Deratani, A., Volet, G., & Sebille, B. (1997). Preparation and characterization of water soluble high molecular weight p-cyclodextrin-epichlorohydrin polymers. European Polymer Journal, 33, 49–57. https://doi.org/10.1016/S0014-3057(96)00123-1

    Article  CAS  Google Scholar 

  46. Real, D. A., Bolaños, K., Priotti, J., et al. (2021). Cyclodextrin-modified nanomaterials for drug delivery: Classification and advances in controlled release and bioavailability. Pharmaceutics, 13(12). https://doi.org/10.3390/pharmaceutics13122131

  47. Shao, Y., Martel, B., Morcellet, M., et al. (1996). Sorption of textile dyes on 13-cyclodextrin-epichlorhydrin gels. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 25, 209–212. https://doi.org/10.1007/BF01041570

    Article  CAS  Google Scholar 

  48. Baille, W.E., Huang, W.Q., Nichifor, M., & Zhu, X.X. (2000). Functionalized β-cyclodextrin polymers for the sorption of bile salts. Journal of Macromolecular Science Pure and Applied Chemistry, 37(A), 677–690. https://doi.org/10.1081/MA-100101117

  49. Fan, J., Yu, C., Gao, F., et al. (2003). Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angewandte Chemie International Edition, 42, 3146–3150. https://doi.org/10.1002/anie.200351027

    Article  CAS  Google Scholar 

  50. Cinà, V., Russo, M., Lazzara, G., et al. (2017). Pre- and post-modification of mixed cyclodextrin-calixarene co-polymers: A route towards tunability. Carbohydrate Polymers, 157, 1393–1403. https://doi.org/10.1016/j.carbpol.2016.11.018

    Article  CAS  Google Scholar 

  51. Tripathi, S. M., & Ram, S. (2018). Bioremediation of groundwater: An overview. International Journal of Applied Engineering Research, 13, 16825–16832. http://www.ripublication.com/

  52. Cassidy, D. P., Srivastava, V. J., Dombrowski, F. J., & Lingle, J. W. (2015). Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil. Journal of Hazardous Materials, 297, 347–355. https://doi.org/10.1016/j.jhazmat.2015.05.030

    Article  CAS  Google Scholar 

  53. Perini, B. L. B., Bitencourt, R. L., Daronch, N. A., et al. (2020). Surfactant-enhanced in-situ enzymatic oxidation: A bioremediation strategy for oxidation of polycyclic aromatic hydrocarbons in contaminated soils and aquifers. Journal of Environmental Chemical Engineering, 8. https://doi.org/10.1016/j.jece.2020.104013

  54. Yoshikawa, M., Zhang, M., & Toyota, K. (2017). Biodegradation of volatile organic compounds and their effects on biodegradability under co-existing conditions. Microbes and Environments, 32, 188–200. https://doi.org/10.1264/jsme2.ME16188

    Article  Google Scholar 

  55. Usman, M., Jellali, S., Anastopoulos, I., et al. (2022). Fenton oxidation for soil remediation: A critical review of observations in historically contaminated soils. Journal of Hazardous Materials, 424. https://doi.org/10.1016/j.jhazmat.2021.127670

  56. Wei, Z., Van Le, Q., Peng, W., et al. (2021). A review on phytoremediation of contaminants in air, water and soil. Journal of Hazardous Materials, 403. https://doi.org/10.1016/j.jhazmat.2020.123658

  57. Petty, D. G., Getsinger, K. D., & Woodburn, K. B. (2003). A review of the aquatic environmental fate of triclopyr and its major metabolites. Journal Aquatic Plant Management, 41, 69–75. http://hdl.handle.net/1834/19638

  58. Ali, H., & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’—Proposal of a comprehensive definition. Toxicological and Environmental Chemistry, 100, 6–19. https://doi.org/10.1080/02772248.2017.1413652

    Article  CAS  Google Scholar 

  59. Mahvi, A.H., Balarak, D., & Bazrafshan, E. (2021). Remarkable reusability of magnetic Fe3O4-graphene oxide composite: A highly effective adsorbent for Cr(VI) ions. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.1910250

  60. Yang, G., Fang, D., Yang, L., et al. (2022). Tailored construction of β-cyclodextrin covalently-supported tannic acid polymer nanosponge towards highly selective lead recovery. Journal of Cleaner Production, 330. https://doi.org/10.1016/j.jclepro.2021.129882

  61. Di Vincenzo, A., Russo, M., Cataldo, S., et al. (2019). Effect of pH variations on the properties of cyclodextrin-calixarene nanosponges. Chemistry Select, 4, 6155–6161. https://doi.org/10.1002/slct.201901200

    Article  CAS  Google Scholar 

  62. Cataldo, S., Lo Meo, P., Conte, P., et al. (2021). Evaluation of adsorption ability of cyclodextrin-calixarene nanosponges towards Pb2+ ion in aqueous solution. Carbohydrate Polymers, 267. https://doi.org/10.1016/j.carbpol.2021.118151

  63. Taka, A. L., Fosso-Kankeu, E., Pillay, K., & Mbianda, X. Y. (2018). Removal of cobalt and lead ions from wastewater samples using an insoluble nanosponge biopolymer composite: Adsorption isotherm, kinetic, thermodynamic, and regeneration studies. Environmental Science and Pollution Research, 25, 21752–21767. https://doi.org/10.1007/s11356-018-2055-6

    Article  CAS  Google Scholar 

  64. Divrikli, U., Kartal, A. A., Soylak, M., & Elci, L. (2007). Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 145, 459–464. https://doi.org/10.1016/j.jhazmat.2006.11.040

    Article  CAS  Google Scholar 

  65. Zhu, W. P., Sun, S. P., Gao, J., et al. (2014). Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of Membrane Science, 456, 117–127. https://doi.org/10.1016/j.memsci.2014.01.001

    Article  CAS  Google Scholar 

  66. Zargar, B., Parham, H., & Shiralipour, R. (2017). Removal of Pb and Cd ions from contaminated water by dithizone-modified cellulose acetate nanosponges. Journal of Materials and Environmental Sciences, 8, 1039–1045. http://www.jmaterenvironsci.com/

  67. Gallard, H., & Von Gunten, U. (2002). Chlorination of natural organic matter: Kinetics of chlorination and of THM formation. Water Research, 36, 65–74. https://doi.org/10.1016/S0043-1354(01)00187-7

    Article  CAS  Google Scholar 

  68. Murray, C. A., & Parsons, S. A. (2004). Removal of NOM from drinking water: Fenton’s and photo-Fenton’s processes. Chemosphere, 54, 1017–1023. https://doi.org/10.1016/j.chemosphere.2003.08.040

    Article  CAS  Google Scholar 

  69. Liao, X., Wang, B., & Zhang, Q. (2018). Synthesis of glycopolymer nanosponges with enhanced adsorption performances for boron removal and water treatment. Journal of Materials Chemistry A, 6, 21193–21206. https://doi.org/10.1039/C8TA06802J

    Article  CAS  Google Scholar 

  70. Mhlanga, S. D., Mamba, B. B., Krause, R. W., & Malefetse, T. J. (2007). Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. Journal of Chemical Technology and Biotechnology, 82, 382–388. https://doi.org/10.1002/jctb.1681

    Article  CAS  Google Scholar 

  71. Salgın, S., Salgın, U., & Vatansever, Ö. (2017). Synthesis and characterization of β-cyclodextrin nanosponge and its application for the removal of p-nitrophenol from water. Clean (Weinh), 45. https://doi.org/10.1002/clen.201500837

  72. Zhang, L., Hao, R., You, H., et al. (2021). Ultra-rapid and highly efficient enrichment of organic pollutants via magnetic nanoparticles/mesoporous nanosponge compounds for ultrasensitive nanosensors. https://doi.org/10.21203/rs.3.rs-127668/v1

  73. Arkas, M., Eleades, L., Paleos, C. M., & Tsiourvas, D. (2005). Alkylated hyperbranched polymers as molecular nanosponges for the purification of water from polycyclic aromatic hydrocarbons. Journal of Applied Polymer Science, 97, 2299–2305. https://doi.org/10.1002/app.22026

    Article  CAS  Google Scholar 

  74. Martwong, E., Chuetor, S., & Junthip, J. (2022). Adsorption of cationic contaminants by cyclodextrin nanosponges cross-linked with 1,2,3,4-butanetetracarboxylic acid and poly(vinyl alcohol). Polymers (Basel), 14. https://doi.org/10.3390/polym14020342

  75. Li, L., Liu, H., Li, W., et al. (2020). One-step synthesis of an environment-friendly cyclodextrin-based nanosponge and its applications for the removal of dyestuff from aqueous solutions. Research on Chemical Intermediates, 46, 1715–1734. https://doi.org/10.1007/s11164-019-04059-w

    Article  CAS  Google Scholar 

  76. Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2016). Halloysite clay nanotubes for loading and sustained release of functional compounds. Advanced Materials, 28, 1227–1250. https://doi.org/10.1002/adma.201502341

    Article  CAS  Google Scholar 

  77. Fakhrullina, G. I., Akhatova, F. S., Lvov, Y. M., & Fakhrullin, R. F. (2015). Toxicity of halloysite clay nanotubes in vivo: A Caenorhabditis elegans study. Environmental Science Nano, 2, 54–59. https://doi.org/10.1039/c4en00135d

    Article  CAS  Google Scholar 

  78. Kryuchkova, M., Danilushkina, A., Lvov, Y., & Fakhrullin, R. (2016). Evaluation of toxicity of nanoclays and graphene oxide: In vivo A Paramecium caudatum study. Environmental Science Nano, 3, 442–452. https://doi.org/10.1039/c5en00201j

    Article  CAS  Google Scholar 

  79. Bellani, L., Giorgetti, L., Riela, S., et al. (2016). Ecotoxicity of halloysite nanotube–supported palladium nanoparticles in Raphanus sativus L. Environmental Toxicology and Chemistry, 35, 2503–2510. https://doi.org/10.1002/etc.3412

    Article  CAS  Google Scholar 

  80. Massaro, M., Colletti, C. G., Lazzara, G., et al. (2017). Synthesis and characterization of halloysite-cyclodextrin nanosponges for enhanced dyes adsorption. ACS Sustainable Chemistry and Engineering, 5, 3346–3352. https://doi.org/10.1021/acssuschemeng.6b03191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shefali Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, S., Sagar, B., Gupta, S. (2023). Application of Cyclodextrin-Based Nanosponges in Soil and Aquifer Bioremediation. In: Gulati, S. (eds) Nanosponges for Environmental Remediation . Springer, Cham. https://doi.org/10.1007/978-3-031-41077-2_7

Download citation

Publish with us

Policies and ethics

Navigation