General Introduction and Economic Analysis

  • Chapter
  • First Online:
Engineering Granular Microbiomes

Part of the book series: Springer Theses ((Springer Theses))

  • 87 Accesses

Abstract

In industrialized countries, the wastewater treatment sector shifts paradigms to achieve sustainability on top of environmental and health protection. Biological processes designed for nutrient removal are economically attractive and enable the coupling of wastewater treatment and resource recovery. Compact designs are required to remove nutrients at high rate with low footprint, energy, and resource expenditures. Biofilm and granular sludge processes are intensive alternatives to conventional activated sludge configurations. The aerobic granular sludge technology enables the simultaneous removal of carbon, nitrogen and phosphorus and the clarification of effluents in single sequencing batch reactors. By intensifying wastewater treatment, it supports the integration of advanced processes to valorize resources and eliminate emerging contaminants. An economic analysis was conducted here to address the savings in costs associated with municipal wastewater treatment, based on capital and operating expenditures related to the technology. Implementing granular sludge processes in a Swiss WWTP of 200,000 person equivalents could lead to annual savings of approximately 6 million Swiss francs. Microbiological and biotechnological research can support the fundamental understanding of granular sludge phenomena, the development of ecological engineering principles for process design, and the expansion of the technology as a new standard for biological wastewater treatment.

Apart from being better, an innovation needs to be cheaper as well.

(van der Roest and van Loosdrecht 2012)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Background photo from WWTP Thunersee at the foothills of Eiger, Mönch, and Jungfrau mountains in the Swiss Alps. This WWTP was closely linked to research investigations of this book. It is one of the few WWTPs in Switzerland that removes all nutrients biologically. It served as the source of seed sludge for the research chapters of this work.

  2. 2.

    https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981.

  3. 3.

    de Kreuk and Weissbrodt (conference chairs), International Water Association, Biofilms Specialist Group, “IWA Biofilms: Granular Sludge Conference 2018”, Delft, The Netherlands. www.granularsludgeconference.org.

  4. 4.

    Link to electronic website: www.dhv.com/nereda.

References

  • Abegglen C, Ospelt M, Siegrist H (2008) Biological nutrient removal in a small-scale MBR treating household wastewater. Water Res 42(1–2):338–346

    Article  CAS  PubMed  Google Scholar 

  • Abouhend AS, Milferstedt K, Hamelin J, Ansari AA, Butler C, Carbajal-González BI, Park C (2020) Growth progression of oxygenic photogranules and its impact on bioactivity for aeration-free wastewater treatment. Environ Sci Technol 54(1):486–496

    Google Scholar 

  • Abraham DM (2003) Life cycle cost integration for the rehabilitation of wastewater infrastructure. In: Molenaar KR, Chinowsky PS (eds) Contruction research congress winds of change: integration and innovation in construction. ASCE, Honolulu, pp 627–635

    Google Scholar 

  • Adav SS, Lee DJ, Show KY, Tay JH (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26(5):411–423

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TMI, Ong HC, Chia WY, Show PL (2021) Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J Hazard Mater 416:125912

    Google Scholar 

  • Alha K, Holliger C, Larsen BS, Purcell P, Rauch W (2000) Environmental engineering education—summary report of the 1st European Seminar. Water Sci Technol 41:1–7

    Google Scholar 

  • Amann R, Kuhl M (1998) In situ methods for assessment of microorganisms and their activities. Curr Opin Microbiol 1(3):352–358

    Article  CAS  PubMed  Google Scholar 

  • Ardern E (1927) The activated sludge process of sewage purification. J Soc Chem Ind 36:822–830

    Google Scholar 

  • Arnaout CL, Gunsch CK (2012) Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea. Environ Sci Technol 46(10):5387–5395

    Google Scholar 

  • Bangerter B (2017) Abwasserkennzahlen ARA Thunersee. ARA Thunersee, Uetendorf, p 27

    Google Scholar 

  • Baquero F, Martínez JL, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19(3):260–265

    Google Scholar 

  • Barnard JL, Abraham K (2006) Key features of successful BNR operation. Water Sci Technol 53(12):1–9

    Article  CAS  PubMed  Google Scholar 

  • Barnard JL, Steichen MT (2006) Where is biological nutrient removal going now? Water Sci Technol 53(3):155–164

    Article  CAS  PubMed  Google Scholar 

  • Beardsley TM (2011) Peak phosphorus. Bioscience 61(2):91

    Article  Google Scholar 

  • Beck MB, Cummings RG (1996) Wastewater infrastructure: challenges for the sustainable city in the new millennium. Habitat Int 20(3):405–420

    Article  Google Scholar 

  • Bell S (2015) Renegotiating urban water. Prog Plan 96:1–28

    Article  Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317

    Article  CAS  PubMed  Google Scholar 

  • Beun JJ, Hendriks A, van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ (1999) Aerobic granulation in a sequencing batch reactor. Water Res 33(10):2283–2290

    Article  CAS  Google Scholar 

  • Beun JJ, van Loosdrecht MCM, Heijnen JJ (2000) Aerobic granulation. Water Sci Technol 41(4–5):41–48

    Article  CAS  Google Scholar 

  • Binz C, Harris-Lovett S, Kiparsky M, Sedlak DL, Truffer B (2016) The thorny road to technology legitimation—institutional work for potable water reuse in California. Technol Forecast Soc Change 103:249–263

    Article  Google Scholar 

  • Blansaer N, Alloul A, Verstraete W, Vlaeminck SE, Smets BF (2022) Aggregation of purple bacteria in an upflow photobioreactor to facilitate solid/liquid separation: impact of organic loading rate, hydraulic retention time and water composition. Bioresour Technol 348:126806

    Google Scholar 

  • Boss H (2008) ARA Thunersee Jahresbericht 2008. ARA Thunersee, Uetendorf, p 15

    Google Scholar 

  • Brockmann D, Gérand Y, Park C, Milferstedt K, Hélias A, Hamelin J (2021) Wastewater treatment using oxygenic photogranule-based process has lower environmental impact than conventional activated sludge process. Bioresour Technol 319:124204

    Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179

    Google Scholar 

  • de Bruin LMM, Kraan MW, de Kreuk MK (2007) Process and apparatus for the purification of waste water. NL Patent WO 2007/089141, 20.01.2006

    Google Scholar 

  • Buckley C, Friedrich E, von Blottnitz H (2011) Life-cycle assessments in the South African water sector: a review and future challenges. Water SA 37:719–726

    Google Scholar 

  • Bunse P, Orschler L, Agrawal S, Lackner S (2020) Membrane aerated biofilm reactors for mainstream partial nitritation/anammox: experiences using real municipal wastewater. Water Res X 9:100066

    Google Scholar 

  • Bürgmann H, Frigon D, Gaze WH, Manaia CM, Pruden A, Singer AC, Smets BF, Zhang T (2018) Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiol Ecol 94(9):fiy101

    Google Scholar 

  • Calderón-Franco D, Lin Q, van Loosdrecht MCM, Abbas B, Weissbrodt DG (2020) Anticipating xenogenic pollution at the source: impact of sterilizations on DNA release from microbial cultures. Front Bioeng Biotechnol 8:171

    Google Scholar 

  • Calderón-Franco D, van Loosdrecht MCM, Abeel T, Weissbrodt DG (2021) Free-floating extracellular DNA: systematic profiling of mobile genetic elements and antibiotic resistance from wastewater. Water Res 189:116592

    Google Scholar 

  • Calderón-Franco D, Sarelse R, Christou S, Pronk M, van Loosdrecht MCM, Abeel T, Weissbrodt DG (2022) Metagenomic profiling and transfer dynamics of antibiotic resistance determinants in a full-scale granular sludge wastewater treatment plant. Water Res 219:118571

    Google Scholar 

  • Capodaglio AG, Callegari A, Cecconet D, Molognoni D (2017) Sustainability of decentralized wastewater treatment technologies. Water Pract Technol 12(2):463–477

    Google Scholar 

  • Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182

    Google Scholar 

  • Cerruti M, Stevens B, Ebrahimi S, Alloul A, Vlaeminck SE, Weissbrodt DG (2020) Enrichment and aggregation of purple non-sulfur bacteria in a mixed-culture sequencing-batch photobioreactor for biological nutrient removal from wastewater. Front Bioeng Biotechnol 8:557234

    Google Scholar 

  • Chfadi T, Gheblawi M, Thaha R (2021) Public acceptance of wastewater reuse: new evidence from factor and regression analyses. Water 13(10):1391

    Google Scholar 

  • Coats ER, Watkins DL, Kranenburg D (2011) A comparative environmental life-cycle analysis for removing phosphorus from wastewater: biological versus physical/chemical processes. Water Environ Res 83(8):750–760

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Kirchmann H, Enfält P (2011) Management of phosphorus resources—historical perspective, principal problems and sustainable solutions. In: Kumar S (ed) Integrated waste management, vol II. InTech, pp 247–268

    Google Scholar 

  • Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, Wiesner MR, Bernhardt ES (2014) Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48(9):5229–5236

    Google Scholar 

  • Coma M, Verawaty M, Pijuan M, Yuan Z, Bond PL (2012) Enhancing aerobic granulation for biological nutrient removal from domestic wastewater. Bioresour Technol 103(1):101–108

    Article  CAS  PubMed  Google Scholar 

  • Cote PL (2006) Wastewater treatment with aerobic granules. US Patent WO 2006/642513, 21.12.2006

    Google Scholar 

  • Cote PL, Behmann H (2008) Flow-through aerobic granulator. US Patent WO 2004/024638, 02.12.2008

    Google Scholar 

  • Cydzik-Kwiatkowska A, Rusanowska P, Zielińska M, Bernat K, Wojnowska-Baryła I (2014) Structure of nitrogen-converting communities induced by hydraulic retention time and COD/N ratio in constantly aerated granular sludge reactors treating digester supernatant. Bioresour Technol 154:162–170.

    Google Scholar 

  • Czekalski N, Gascón Díez E, Bürgmann H (2014) Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME J 8(7):1381–1390

    Google Scholar 

  • Daigger GT (2008) New approaches and technologies for wastewater management. Bridge Link Eng Soc Fall 38–45

    Google Scholar 

  • Daigger GT (2009) Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery. Water Environ Res 81(8):809–823

    Article  CAS  PubMed  Google Scholar 

  • Daigger GT (2011) Changing paradigms: from wastewater treatment to resource recovery. Proc Water Environ Fed 2011(6):942–957

    Google Scholar 

  • Daigger GT (2017) Flexibility and adaptability: essential elements of the WRRF of the future. Water Pract Technol 12(1):156–165

    Article  Google Scholar 

  • Daigger GT, Rittmann BE, Adham S, Andreottola G (2005) Are membrane bioreactors ready for widespread application? Environ Sci Technol 39(19):399A–406A

    Article  CAS  PubMed  Google Scholar 

  • Dangcong P, Bernet N, Delgenes JP, Moletta R (1999) Aerobic granular sludge—a case report. Water Res 33:890–893

    Article  Google Scholar 

  • de Bruin LMM (2011) Scaling-up aerobic granular sludge technology—role of different players in the process. In: Zhou Q (ed) IWA biofilm conference processes in biofilms, Shanghai

    Google Scholar 

  • de Bruin LMM, de Kreuk MK, van der Roest HFR, Uijterlinde C, van Loosdrecht MCM (2004) Aerobic granular sludge technology: an alternative to activated sludge? Water Sci Technol 49(11–12):1–7

    Article  PubMed  Google Scholar 

  • de Graaff DR, van Loosdrecht MCM, Pronk M (2020) Stable granulation of seawater-adapted aerobic granular sludge with filamentous Thiothrix bacteria. Water Res 175

    Google Scholar 

  • de Kreuk MK (2006) Aerobic granular sludge, scaling up a new technology. PhD thesis, Delft University of Technology

    Google Scholar 

  • de Kreuk MK, Heijnen JJ, van Loosdrecht MCM (2005a) Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng 90(6):761–769

    Article  PubMed  Google Scholar 

  • de Kreuk MK, McSwain BS, Bathe S, Tay STL, Schwarzenbeck N, Wilderer PA (2005b) Discussion outcomes. In: Bathe S, de Kreuk MK, McSwain BS, Schwarzenbeck N (eds) Aerobic granular sludge. IWA, London, pp 153–169

    Google Scholar 

  • de Kreuk MK, Kishida N, van Loosdrecht MCM (2007) Aerobic granular sludge—state of the art. Water Sci Technol 55:75–81

    Article  PubMed  Google Scholar 

  • de Kreuk MK, Kishida N, Tsuneda S, van Loosdrecht MCM (2010) Behavior of polymeric substrates in an aerobic granular sludge system. Water Res 44(20):5929–5938

    Article  PubMed  Google Scholar 

  • De Vleeschauwer F, Caluwé M, Dobbeleers T, Stes H, Dockx L, Kiekens F, Copot C, Dries J (2021) A dynamically controlled anaerobic/aerobic granular sludge reactor efficiently treats brewery/bottling wastewater. Water Sci Technol 84(12):3515–3527

    Article  PubMed  Google Scholar 

  • Derlon N, Wagner J, da Costa RHR, Morgenroth E (2016) Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume. Water Res 105:341–350

    Article  CAS  PubMed  Google Scholar 

  • Di Iaconi C, Ramadori R, Lopez A, Passino R (2007) Aerobic granular sludge systems: The new generation of wastewater treatment technologies. Ind Eng Chem Res 46 (21):6661–6665

    Google Scholar 

  • Di Iaconi C, del Moro G, Ramadori R, Lopez A, Colombino M, Moletta R (2009) Influence of hydraulic residence time on the performances of an aerobic granular biomass based system for treating municipal wastewater at demonstrative scale. Desalin Water Treat 4(1–3):206–211

    Article  Google Scholar 

  • Dishman CM, Sherrard JH, Rebhun M (1989) Gaining support for direct potable water reuse. J Prof Issues Eng Educ Pract 115(2):154–161

    Article  Google Scholar 

  • Dold PL, Ekama GA, Van Marais GR (1980) A general model for the activated sludge process. Prog Water Technol 12(6):47–77

    CAS  Google Scholar 

  • Dottorini G, Wágner DS, Stokholm-Bjerregaard M, Kucheryavskiy S, Michaelsen TY, Nierychlo M, Peces M, Williams R, Nielsen PH, Andersen KS, Nielsen PH (2023) Full-scale activated sludge transplantation reveals a highly resilient community structure. Water Res 229:119454

    Google Scholar 

  • Downing L, Redmond E, Avila I (2022) When density is desirable. Water Online

    Google Scholar 

  • Duque AF, Bessa VS, Castro PML (2015) Characterization of the bacterial communities of aerobic granules in a 2-fluorophenol degrading process. Biotechnol Rep 5:98–104

    Google Scholar 

  • Dutch Water Sector (2019) World’s first waste water treatment plant to produce biopolymer. Kaumera Water & Technology, Netherlands

    Google Scholar 

  • Eggen RI, Hollender J, Joss A, Schärer M, Stamm C (2014) Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 48(14):7683–7689

    Article  CAS  PubMed  Google Scholar 

  • Eggimann S, Truffer B, Maurer M (2015) To connect or not to connect? Modelling the optimal degree of centralisation for wastewater infrastructures. Water Res 84:218–231

    Article  CAS  PubMed  Google Scholar 

  • Enfrin M, Dumée LF, Lee J (2019) Nano/microplastics in water and wastewater treatment processes—origin, impact and potential solutions. Water Res 161:621–638

    Article  CAS  PubMed  Google Scholar 

  • Eriksson E, Revitt DM, Ledin A, Lundy L, Holten Lutzhoft HC, Wickman T, Mikkelsen PS (2011) Water management in cities of the future using emission control strategies for priority hazardous substances. Water Sci Technol 64(10):2109–2118

    Google Scholar 

  • Etterer T, Wilderer PA (2001) Generation and properties of aerobic granular sludge. Water Sci Technol 43:19–26

    Article  CAS  PubMed  Google Scholar 

  • Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409(19):3555–3563

    Google Scholar 

  • Felz S, Al-Zuhairy S, Aarstad OA, van Loosdrecht MCM, Lin YM (2016) Extraction of structural extracellular polymeric substances from aerobic granular sludge. J Vis Exp 115

    Google Scholar 

  • Foley J, de Haas D, Hartley K, Lant P (2010) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res 44(5):1654–1666

    Article  CAS  PubMed  Google Scholar 

  • Frossard E, Bauer JP, Lothe F (1997) Evidence of vivianite in FeSO 4 -flocculated sludges. Water Res 31(10):2449–2454

    Article  CAS  Google Scholar 

  • Fux C, Egli K, van der Meer JR, Siegrist H (2003) The anammox process for nitrogen removal from wastewater: the fruitful collaboration between microbiologists and process engineers. In: Eawag News, vol 56. Eawag, Duebendorf

    Google Scholar 

  • Gao T, Chen H, **a S, Zhou Z (2008) Review of water pollution control in China. Front Environ Sci Eng China 2(2):142–149

    Google Scholar 

  • Garner E, McLain J, Bowers J, Engelthaler DM, Edwards MA, Pruden A (2018) Microbial ecology and water chemistry impact regrowth of opportunistic pathogens in full-scale reclaimed water distribution systems. Environ Sci Technol 52(16):9056–9068

    Google Scholar 

  • Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32(1):147–156

    Google Scholar 

  • Giesen A, Niermans R, van Loosdrecht MCM (2012) Aerobic granular biomass: the new standard for domestic and industrial wastewater treatment? Water 21 4:28–30

    Google Scholar 

  • Giesen A, van Loosdrecht M, Robertson S, de Bruin B (2015) Aerobic granular biomass technology: further innovation, system development and design optimisation. Proc Water Environ Fed 2015(16):1897–1917

    Google Scholar 

  • Gillings MR, Westoby M, Ghaly TM (2018) Pollutants that replicate: xenogenetic DNAs. Trends Microbiol 26(12):975–977

    Article  CAS  PubMed  Google Scholar 

  • Ginn O, Berendes D, Wood A, Bivins A, Rocha-Melogno L, Deshusses MA, Tripathi SN, Bergin MH, Brown J (2021) Open waste canals as potential sources of antimicrobial resistance genes in aerosols in Urban Kanpur, India. Am J Trop Med Hyg 104(5):1761–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glancer-Soljan M, Ban S, Landeka Dragicevic T, Soljan V, Matic V (2001) Granulated mixed microbial culture suggesting successful employment of bioaugmentation in the treatment of process wastewaters. Chem Biochem Eng Q 15(3):87–94

    Google Scholar 

  • Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. Clean Soil Air Water 43(4):479–489

    Article  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Graham DW, Bergeron G, Bourassa MW, Dickson J, Gomes F, Howe A, Kahn LH, Morley PS, Scott HM, Simjee S, Singer RS, Smith TC, Storrs C, Wittum TE (2019) Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann N Y Acad Sci 1441:17–30

    Google Scholar 

  • Grommen R, Verstraete W (2002) Environmental biotechnology: the ongoing quest. J Biotechnol 98(1):113–123

    Article  CAS  PubMed  Google Scholar 

  • Grotehusmann D, Kheli A, Sieker F, Uhl M (1994) Alternative urban drainage concept and design. Water Sci Technol 29(1–2):277–282

    Article  Google Scholar 

  • Grotenhuis JTC, Smit M, Lammeren AAM, Stams AJM, Zehnder AJB (1991) Localization and quantification of extracellular polymers in methanogenic granular sludge. Appl Microbiol Biotechnol 36(1):115–119

    Article  CAS  Google Scholar 

  • Gruber W, von Känel L, Vogt L, Luck M, Biolley L, Feller K, Moosmann A, Krähenbühl N, Kipf M, Loosli R, Vogel M, Morgenroth E, Braun D, Joss A (2021) Estimation of countrywide N2O emissions from wastewater treatment in Switzerland using long-term monitoring data. Water Res X 13:100122

    Google Scholar 

  • Guest JS, Skerlos SJ, Barnard JL, Beck MB, Daigger GT, Hilger H, Jackson SJ, Karvazy K, Kelly L, Macpherson L, Mihelcic JR, Pramanik A, Raskin L, Van Loosdrecht MCM, Yeh D, Love NG (2009) A new planning and design paradigm to achieve sustainable resource recovery from wastewater. Environ Sci Technol 43(16):6126–6130

    Article  CAS  PubMed  Google Scholar 

  • Guest JS, Skerlos SJ, Daigger GT, Corbett JRE, Love NG (2010) The use of qualitative system dynamics to identify sustainability characteristics of decentralized wastewater management alternatives. Water Sci Technol 61(6):1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Englehardt J, Wu T (2014) Review of cost versus scale: water and wastewater treatment and reuse processes. Water Sci Technol 69(2):223–234

    Article  PubMed  Google Scholar 

  • Hao XD, van Loosdrecht MCM (2003) A proposed sustainable BNR plant with the emphasis on recovery of COD and phosphate. Water Sci Technol 48:77–85

    Article  CAS  PubMed  Google Scholar 

  • He H, Wagner BM, Carlson AL, Yang C, Daigger GT (2021) Recent progress using membrane aerated biofilm reactors for wastewater treatment. Water Sci Technol 84(9):2131–2157

    Article  CAS  PubMed  Google Scholar 

  • Heffer P, Prud’homme M, Muirhead B, Isherwood KF (2006) Phosphorus fertilization: issues and outlook. In: IFS (ed) International fertiliser society conference, vol 586. The International Fertilizer Society, Cambridge, p 586

    Google Scholar 

  • Heijnen JJ, van Loosdrecht MCM (1998) Method for acquiring grain-shaped growth of a microorganism in a reactor. NL Patent WO 98/37027, 27.08.1998

    Google Scholar 

  • Hirota R, Kuroda A, Kato J, Ohtake H (2009) Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. J Biosci Bioeng 109(5):423–432

    Article  PubMed  Google Scholar 

  • Howard JR, Hodgson KG, Simpson DE (1997) Water quality monitoring and reporting compliance—meeting the challenges of effective water resources management in a develo** country. Water Supply 15(4):65–74

    Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu ZL (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35(1):75–139

    Article  CAS  Google Scholar 

  • Hu ZR, Wentzel MC, Ekama GA (2007) A general kinetic model for biological nutrient removal activated sludge systems: model development. Biotechnol Bioeng 98(6):1242–1258

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Cheng H, Ji J, Li Y-Y (2020) A review of anaerobic membrane bioreactors for municipal wastewater treatment with a focus on multicomponent biogas and membrane fouling control. Environ Sci Water Res Technol 6(10):2641–2663

    Article  CAS  Google Scholar 

  • Huisman JL, Krebs P, Gujer W (2003) Integral and unified model for the sewer and wastewater treatment plant focusing on transformations. Water Sci Technol 47(12):65–71

    Article  CAS  PubMed  Google Scholar 

  • Hultman B, Plaza E (2010) Wastewater treatment—new challenges. In: Plaza E, Levlin E (eds) Research and application of new technologies in wastewater treatment and municipal solid waste disposal in Ukraine, Sweden and Poland, vol 3026. TRITA-LWR. Report, Stockholm, pp 1–11

    Google Scholar 

  • Hurlimann A, Dolnicar S (2010) When public opposition defeats alternative water projects—the case of Toowoomba Australia. Water Res 44(1):287–297

    Article  CAS  PubMed  Google Scholar 

  • Ikuma K, Rehmann CR (2020) Importance of extracellular DNA in the fate and transport of antibiotic resistance genes downstream of a wastewater treatment plant. Environ Eng Sci 37(2):164–168

    Article  CAS  Google Scholar 

  • Inocencio P, Coehlo F, van Loosdrecht MCM, Giesen A (2013) The future of sewage treatment: Nereda technology exceeds high expectations. Water 21(4):28–29

    Google Scholar 

  • Iribarnegaray MA, Rodriguez-Alvarez MS, Moraña LB, Tejerina WA, Seghezzo L (2018) Management challenges for a more decentralized treatment and reuse of domestic wastewater in metropolitan areas. J Water Sanit Hyg Dev 8(1):113–122

    Article  Google Scholar 

  • Janczukowicz W, Szewczyk M, Krzemieniewski M, Pesta J (2001) Settling properties of activated sludge from a sequencing batch reactor (SBR). Pol J Environ Stud 10(1):15–20

    CAS  Google Scholar 

  • Janssens I, Tanghe T, Verstraete W (1997) Micropollutants: a bottleneck in sustainable wastewater treatment. Water Sci Technol 35(10):13–26

    Article  CAS  Google Scholar 

  • Jedelhauser M, Mehr J, Binder CR (2018) Transition of the Swiss phosphorus system towards a circular economy—part 2: socio-technical scenarios. Sustainability 10(6):1980

    Google Scholar 

  • Jeffrey P, Stephenson T, Temple C (2004) Ever deeper and wider: incorporating sustainability into a practitioner oriented engineering curriculum. Water Sci Technol 49(8):43–48

    Article  CAS  PubMed  Google Scholar 

  • Jemaat Z, Suarez-Ojeda ME, Perez J, Carrera J (2013) Simultaneous nitritation and p-nitrophenol removal using aerobic granular biomass in a continuous airlift reactor. Bioresour Technol 150:307–313

    Article  CAS  PubMed  Google Scholar 

  • Jenkins D, Wanner J (eds) (2014) Activated sludge—100 years and counting. London

    Google Scholar 

  • Jung YT, Narayanan NC, Cheng YL (2018) Cost comparison of centralized and decentralized wastewater management systems using optimization model. J Environ Manage 213:90–97

    Article  PubMed  Google Scholar 

  • Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47(12):3866–3877

    Article  CAS  PubMed  Google Scholar 

  • Kehrein P, van Loosdrecht M, Osseweijer P, Garfí M, Dewulf J, Posada J (2020a) A critical review of resource recovery from municipal wastewater treatment plants—market supply potentials, technologies and bottlenecks. Environ Sci Water Res Technol 6(4):877–910

    Article  CAS  Google Scholar 

  • Kehrein P, van Loosdrecht M, Osseweijer P, Posada J, Dewulf J (2020b) The SPPD-WRF framework: a novel and holistic methodology for strategical planning and process design of water resource factories. Sustainability 12(10):4168

    Article  Google Scholar 

  • Keller J (2008) Reduce, recover, and…? Chem Eng (804):24–25

    Google Scholar 

  • Keller J, Giesen A (2010) Advancements in aerobic granular biomass processes. Paper presented at the Neptune and Innowatech end user conference, Gent, Belgium, 27 Jan 2010

    Google Scholar 

  • Kim KS, Gee CS, Lee HJ, Kim CW, Seo BW, Ahn KH, Cho HH, Byun YS (2003) Sewage treatment apparatus using selfgranulated activated sludge and sewage treatment method thereof. Korea Patent WO 2003/10734342, 11.12.2003

    Google Scholar 

  • Kleerebezem R, van Loosdrecht MC (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18(3):207–212

    Article  CAS  PubMed  Google Scholar 

  • Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ Sci Technol 46(3):1536–1545

    Article  CAS  PubMed  Google Scholar 

  • Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55:292–303

    Article  CAS  PubMed  Google Scholar 

  • Lalumière A (2016) Le PEX StaRRE: un nouveau programme destiné aux ouvrages d’assainissement des eaux usées. Vecteur Environ Mars 58–59

    Google Scholar 

  • Lancelot C (1995) The mucilage phenomenon in the continental coastal waters of the North Sea. Sci Total Environ 165:83–102

    Article  CAS  Google Scholar 

  • Langergraber G, Muellegger E (2005) Ecological sanitation—a way to solve global sanitation problems? Environ Int 31(3):433–444

    Article  CAS  PubMed  Google Scholar 

  • Larsen P, Eriksen PS, Lou MA, Thomsen TR, Kong YH, Nielsen JL, Nielsen PH (2006) Floc-forming properties of polyphosphate accumulating organisms in activated sludge. Water Sci Technol 54(1):257–265

    Article  CAS  PubMed  Google Scholar 

  • Laureni M, Falås P, Robin O, Wick A, Weissbrodt DG, Nielsen JL, Ternes T, Morgenroth E, Joss A (2016) Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures. Water Res 101:628–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layer M, Bock K, Ranzinger F, Horn H, Morgenroth E, Derlon N (2020a) Particulate substrate retention in plug-flow and fully-mixed conditions during operation of aerobic granular sludge systems. Water Res X 9:100075

    Google Scholar 

  • Layer M, Villodres MG, Hernandez A, Reynaert E, Morgenroth E, Derlon N (2020b) Limited simultaneous nitrification-denitrification (SND) in aerobic granular sludge systems treating municipal wastewater: mechanisms and practical implications. Water Res X 7:100048

    Google Scholar 

  • Lazarova V (1999) Role of wastewater reuse for the integrated resource management: costs, benefits and technological challenges [Role de la reutilisation des eaux usees pour la gestion integree des ressources: couts, benefices et defis technologiques]. L’eau l’Ind Nuis (227):47–57

    Google Scholar 

  • Lazarova V, Choo K-H, Cornel P (2012) Meeting the challenges of the water-energy nexus: the role of reuse and wastewater treatment. Water21 14:2–17

    Google Scholar 

  • Lemaire R, Webb RI, Yuan Z (2008) Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J 2(5):528–541

    Article  CAS  PubMed  Google Scholar 

  • Lenart-Boroń A, Prajsnar J, Guzik M, Boroń P, Chmiel M (2020) How much of antibiotics can enter surface water with treated wastewater and how it affects the resistance of waterborne bacteria: a case study of the Białka river sewage treatment plant. Environ Res 191:110037

    Google Scholar 

  • Leslie HA, Brandsma SH, van Velzen MJM, Vethaak AD (2017) Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ Int 101:133–142

    Article  CAS  PubMed  Google Scholar 

  • Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Anton Leeuw Int J G 67(1):3–28

    Article  CAS  Google Scholar 

  • Li ZH, Kuba T, Kusuda T (2006) Aerobic granular sludge: a promising technology for decentralised wastewater treatment. Water Sci Technol 53(9):79–85

    Article  CAS  PubMed  Google Scholar 

  • Li ZH, Kuba T, Kusuda T, Wang XC (2008) A comparative study on aerobic granular sludge and effluent suspended solids in a sequence batch reactor. Environ Eng Sci 25(4):577–584

    Article  Google Scholar 

  • Liebi C (2007) Kläranlagen-Benchmarking 2005: Zusammenfassung des Schlussberichtes für die ARA Kloten/Opfikon. Kläranlageverband Kloten/Opfikon, Kappeler Umwelt Consulting AG, Glattbrugg, CH, p 8

    Google Scholar 

  • Likhacheva A (2011) Water industry in Russia: challenges and political priorities. In: Finger M, Kunneacke R, Christodoulou A, Scholten D (eds) 4th annual conference on competition and regulation in network industries. CNRI, Brussels, pp 1–17

    Google Scholar 

  • Lin Y, de Kreuk M, van Loosdrecht MCM, Adin A (2010) Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant. Water Res 44(11):3355–3364

    Article  CAS  PubMed  Google Scholar 

  • Lin YM, Nierop KGJ, Girbal-Neuhauser E, Adriaanse M, van Loosdrecht MCM (2015) Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material. Sustain Mater Technol 4:24–29

    Article  CAS  Google Scholar 

  • Liu Y, Wang Z-W, Liu Y-Q, Qin L, Tay J-H (2005) A generalized model for settling velocity of aerobic granular sludge. Biotechnol Prog 21(2):621–626

    Article  CAS  PubMed  Google Scholar 

  • Lochmatter S, Gonzalez-Gil G, Holliger C (2013) Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge. Water Res 47(16):6187–6197

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Vazquez CM, Wentzel MC, Comeau Y, Ekama GA, van Loosdrecht MCM, Brdjanovic D, Oehmen A (2020) Enhanced biological phosphorus removal. In: Chen G, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design, 2nd edn. IWA Publishing, London, pp 239–326

    Google Scholar 

  • Lu J, Guo J (2021) Disinfection spreads antimicrobial resistance. Science 371(6528):474

    Article  CAS  PubMed  Google Scholar 

  • Ludwig H (2009) Rückgewinnung von Phosphor aus der Abwasserreinigung. Eine Bestandesaufnahme. Bundes Amt für Umwelt, Bern, Schweiz

    Google Scholar 

  • Ma X, Xue X, González-Mejía A, Garland J, Cashdollar J (2015) Sustainable water systems for the city of tomorrow—a conceptual framework. Sustainability (Switzerland) 7(9):12071–12105

    Article  CAS  Google Scholar 

  • Maaz M, Yasin M, Aslam M, Kumar G, Atabani AE, Idrees M, Anjum F, Jamil F, Ahmad R, Khan AL, Lesage G, Heran M, Kim J (2019) Anaerobic membrane bioreactors for wastewater treatment: novel configurations, fouling control and energy considerations. Bioresour Technol 283:358–372

    Google Scholar 

  • Machado AI, Beretta M, Fragoso R, Duarte E (2017) Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. J Environ Manage 187:560–570

    Article  CAS  PubMed  Google Scholar 

  • Manaia CM (2017) Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality between abundance and risk. Trends Microbiol 25(3):173–181

    Article  CAS  PubMed  Google Scholar 

  • Marti N, Ferrer J, Seco A, Bouzas A (2008) Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Res 42(18):4609–4618

    Article  CAS  PubMed  Google Scholar 

  • Mason SA, Garneau D, Sutton R, Chu Y, Ehmann K, Barnes J, Fink P, Papazissimos D, Rogers DL (2016) Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ Pollut 218:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Massoud MA, Tarhini A, Nasr JA (2009) Decentralized approaches to wastewater treatment and management: applicability in develo** countries. J Environ Manage 90(1):652–659

    Article  PubMed  Google Scholar 

  • Maurer M (2007) Infrastructure systems in urban water management—lecture notes. ETH Zurich, Zurich

    Google Scholar 

  • Maurer M (2009) Infrastructure systems in urban water management—lecture notes. ETH Zurich, Zurich

    Google Scholar 

  • Maurer M, Herlyn A (2006) Zustand, Kosten und Investitionsbedarf der schweizerischen Abwasserentsorgung. Eawag-BAFU, Duebendorf, CH, p 63

    Google Scholar 

  • Maurer M, Rothenberger O, Larsen TA (2005) Decentralised wastewater treatment technologies from a national perspective: at what cost are they competitive? Water Sci Technol Water Supply 5(6):145–154

    Article  Google Scholar 

  • Meng Y, Liu W, Fiedler H, Zhang J, Wei X, Liu X, Peng M, Zhang T (2021) Fate and risk assessment of emerging contaminants in reclaimed water production processes. Front Environ Sci Eng 15(5):104

    Google Scholar 

  • Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47(3):957–995

    Article  CAS  PubMed  Google Scholar 

  • Miłobedzka A, Ferreira C, Vaz-Moreira I, Calderón-Franco D, Gorecki A, Purkrtova S, Jan B, Dziewit L, Singleton CM, Nielsen PH, Weissbrodt DG, Manaia CM (2021) Monitoring antibiotic resistance genes in wastewater environments: the challenges of filling a gap in the One-Health cycle. J Hazard Mater 424:127407

    Article  CAS  PubMed  Google Scholar 

  • Mintenig SM, Int-Veen I, Löder MGJ, Primpke S, Gerdts G (2017) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res 108:365–372

    Article  CAS  PubMed  Google Scholar 

  • Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254

    Article  CAS  Google Scholar 

  • Molinos-Senante M, Hernandez-Sancho F, Sala-Garrido R, Garrido-Baserba M (2011) Economic feasibility study for phosphorus recovery processes. Ambio 40(4):408–416

    Article  PubMed  Google Scholar 

  • Morgenroth E, Wilderer PA (1998) Sequencing batch reactor technology: concepts, design and experiences. J Chart Inst Water Environ Manag 12(5):314–321

    Article  Google Scholar 

  • Morgenroth E, Sherden T, van Loosdrecht MCM, Heijnen JJ, Wilderer PA (1997) Aerobic granular sludge in a sequencing batch reactor. Water Res 31(12):3191–3194

    Article  CAS  Google Scholar 

  • Morgenroth E, Daigger GT, Ledin A, Keller J (2004) International evaluation of current and future requirements for environmental engineering education. Water Sci Technol 49(8):11–18

    Article  CAS  PubMed  Google Scholar 

  • Mosquera-Corral A, Arrojo B, Figueroa M, Campos JL, Mendez R (2011) Aerobic granulation in a mechanical stirred SBR: treatment of low organic loads. Water Sci Technol 64(1):155–161

    Article  CAS  PubMed  Google Scholar 

  • Mottet A, Francois E, Latrille E, Steyer JP, Deleris S, Vedrenne F, Carrere H (2010) Estimating anaerobic biodegradability indicators for waste activated sludge. Chem Eng J 160(2):488–496

    Article  CAS  Google Scholar 

  • Murphy F, Ewins C, Carbonnier F, Quinn B (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50(11):5800–5808

    Article  CAS  PubMed  Google Scholar 

  • Muryanto S, Bayuseno AP (2012) Wastewater treatment for a sustainable future: overview of phosphorus recovery. Appl Mech Mater 110–116:2043–2048

    Google Scholar 

  • Nansubuga I, Banadda N, Verstraete W, Rabaey K (2016) A review of sustainable sanitation systems in Africa. Rev Environ Sci Biotechnol 15(3):465–478

    Article  Google Scholar 

  • Neethling JB, Clark D, Pramanik A, Stensel HD, Sandino J, Tsuchihashi R (2010) WERF nutrient challenge investigates limits of nutrient removal technologies. Water Sci Technol 61(4):945–953

    Article  CAS  PubMed  Google Scholar 

  • Nerenberg R (2016) The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr Opin Biotechnol 38:131–136

    Article  CAS  PubMed  Google Scholar 

  • Ni BJ, **e WM, Liu SG, Yu HQ, Wang YZ, Wang G, Dai XL (2009) Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res 43(3):751–761

    Article  CAS  PubMed  Google Scholar 

  • Nicolella C, van Loosdrecht MCM, Heijnen SJ (2000) Particle-based biofilm reactor technology. Trends Biotechnol 18(7):312–320

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PH, Raunkjaer K, Norsker NH, Jensen NA, Hvitved-Jacobsen T (1992) Transformation of wastewater in sewer systems—a review. Water Sci Technol 25(6):17–31

    Article  CAS  Google Scholar 

  • Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL (2011) Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology. Curr Opin Biotechnol 23(3):452–459

    Google Scholar 

  • Nowack B (2010) Nanosilver revisited downstream. Science 330(6007):1054–1055

    Article  CAS  PubMed  Google Scholar 

  • O’Connor TP, Rodrigo D, Cannan A (2010) Total water management: the new paradigm for urban water resources planning. In: World environmental and water resources congress 2010: challenges of change. Providence, pp 3251–3260

    Google Scholar 

  • OEaux (1998) Swiss federal water protection ordinance. In: Environment FOft (ed). Bern, CH, p 60

    Google Scholar 

  • Opher T, Friedler E (2016) Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. J Environ Manage 182:464–476

    Article  CAS  PubMed  Google Scholar 

  • Orner KD, Mihelcic JR (2018) A review of sanitation technologies to achieve multiple sustainable development goals that promote resource recovery. Environ Sci Water Res Technol 4(1):16–32

    Article  CAS  Google Scholar 

  • Orth H (2007) Centralised versus decentralised wastewater systems? Water Sci Technol 56:259–266

    Article  CAS  PubMed  Google Scholar 

  • Otterpohl R, Grottker M, Lange J (1997) Sustainable water and waste management in urban areas. Water Sci Technol 35(9):121–133

    Google Scholar 

  • Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB (2013) A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep Purif Technol 118:89–104

    Google Scholar 

  • Pace CB, Harlow R (2000) SBR vs. continuous flow: a cost comparison of waste treatment technologies. In: Proceedings of construction congress VI: building together for a better tomorrow in an increasingly complex world, vol 278, pp 948–957

    Google Scholar 

  • Padervand M, Lichtfouse E, Robert D, Wang C (2020) Removal of microplastics from the environment. A review. Environ Chem Lett 18(3):807–828

    Article  CAS  Google Scholar 

  • Pallares-Vega R, Blaak H, van der Plaats R, de Roda Husman AM, Hernandez Leal L, van Loosdrecht MCM, Weissbrodt DG, Schmitt H (2019) Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: a cross-sectional study. Water Res 161:319–328

    Google Scholar 

  • Pallares-Vega R, Hernandez Leal L, Fletcher BN, Vias-Torres E, van Loosdrecht MCM, Weissbrodt DG, Schmitt H (2021) Annual dynamics of antimicrobials and resistance determinants in flocculent and aerobic granular sludge treatment systems. Water Res 190:116752

    Article  CAS  PubMed  Google Scholar 

  • Parkinson J, Tayler K (2003) Decentralized wastewater management in peri-urban areas in low-income countries. Environ Urban 15(1):75–90

    Article  Google Scholar 

  • Paul E, Laval ML, Sperandio M (2001) Excess sludge production and costs due to phosphorus removal. Environ Technol 22(11):1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Peterson JD, Murphy RR, ** Y, Wang L, Nessl MB, Ikehata K (2011) Health effects associated with wastewater treatment, reuse, and disposal. Water Environ Res 83(10):1853–1875

    Article  CAS  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  PubMed  Google Scholar 

  • Poortvliet PM, Sanders L, Weijma J, De Vries JR (2018) Acceptance of new sanitation: the role of end-users’ pro-environmental personal norms and risk and benefit perceptions. Water Res 131:90–99

    Article  CAS  PubMed  Google Scholar 

  • Pronk M, Abbas B, Al-Zuhairy SH, Kraan R, Kleerebezem R, van Loosdrecht MC (2015a) Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge. Appl Microbiol Biotechnol 99(12):5257–5268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pronk M, de Kreuk MK, de Bruin B, Kamminga P, Kleerebezem R, van Loosdrecht MCM (2015b) Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res 84:207–217

    Article  CAS  PubMed  Google Scholar 

  • Pronk M, van Dijk EJH, van Loosdrecht MCM (2020) Aerobic granular sludge. In: Chen GH, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design, 2nd edn. IWA Publishing, London

    Google Scholar 

  • Pruden A, Alcalde RE, Alvarez PJJ, Ashbolt N, Bischel H, Capiro NL, Crossette E, Frigon D, Grimes K, Haas CN, Ikuma K, Kappell A, LaPara T, Kimbell L, Li M, Li X, McNamara P, Seo Y, Sobsey MD, Sozzi E, Navab-Daneshmand T, Raskin L, Riquelme MV, Vikesland P, Wigginton K, Zhou Z (2018) An environmental science and engineering framework for combating antimicrobial resistance. Environ Eng Sci 35(10):1005–1011

    Article  CAS  Google Scholar 

  • Qasem A, Zayed T, Chen Z (2010) A condition rating system for wastewater treatment plants infrastructures. Int J Civ Environ Eng 2(3):450–454

    Google Scholar 

  • Qiu G, **ang L, Song Y, Peng J, Zeng P, Yuan P (2009) Comparison and modeling of two biofilm processes applied to decentralized wastewater treatment. Front Environ Sci Eng China 3(4):412–420

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    Article  CAS  PubMed  Google Scholar 

  • Rajendra Prasad S (2009) Status of municipal wastewater treatment in some cities of India. In: Jiang Ying H, Praveen M (eds) International conference on environmental science and information application technology, vol 2. Wuhan, pp 346–350

    Google Scholar 

  • Ramadori R, Di Laconi C, Lopez A, Passino R (2006) An innovative technology based on aerobic granular biomass for treating municipal and/or industrial wastewater with low environmental impact. Water Sci Technol 53(12):321–329

    Article  CAS  PubMed  Google Scholar 

  • Regmi P, Sturm B, Hiripitiyage D, Keller N, Murthy S, Jimenez J (2022) Combining continuous flow aerobic granulation using an external selector and carbon-efficient nutrient removal with AvN control in a full-scale simultaneous nitrification-denitrification process. Water Res 210:117991

    Google Scholar 

  • Reungoat J, Escher BI, Macova M, Argaud FX, Gernjak W, Keller J (2012) Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Res 46(3):863–872

    Article  CAS  PubMed  Google Scholar 

  • Rhein F, Nirschl H, Kaegi R (2022) Separation of microplastic particles from sewage sludge extracts using magnetic seeded filtration. Water Res X 17:100155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    Google Scholar 

  • Roefs I, Meulman B, Vreeburg JHG, Spiller M (2017) Centralised, decentralised or hybrid sanitation systems? Economic evaluation under urban development uncertainty and phased expansion. Water Res 109:274–286

    Google Scholar 

  • Russell JN, Yost CK (2021) Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere 263:128177

    Google Scholar 

  • Salgot M (2008) Water reclamation, recycling and reuse: implementation issues. Desalination 218(1–3):190–197

    Article  CAS  Google Scholar 

  • Sarkar SK, Saha M, Takada H, Bhattacharya A, Mishra P, Bhattacharya B (2007) Water quality management in the lower stretch of the river Ganges, east coast of India: an approach through environmental education. J Clean Prod 15(16):1559–1567

    Article  Google Scholar 

  • Schellenberg T, Subramanian V, Ganeshan G, Tompkins D, Pradeep R (2020) Wastewater discharge standards in the evolving context of urban sustainability—the case of India. Front Environ Sci 8:30

    Google Scholar 

  • Schwartz T, Kohnen W, Jansen B, Obst U (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43(3):325–335

    Google Scholar 

  • Schwarzenbeck N, Borges JM, Wilderer PA (2005) Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biotechnol 66(6):711–718

    Google Scholar 

  • Seviour T, Derlon N, Dueholm MS, Flemming H-C, Girbal-Neuhauser E, Horn H, Kjelleberg S, van Loosdrecht MCM, Lotti T, Malpei MF, Nerenberg R, Neu TR, Paul E, Yu H, Lin Y (2019) Extracellular polymeric substances of biofilms: suffering from an identity crisis. Water Res 151:1–7

    Google Scholar 

  • Sheik AR, Muller EEL, Wilmes P (2014) A hundred years of activated sludge: time for a rethink. Front Microbiol 5:47

    Google Scholar 

  • Singh NK, Kazmi AA, Starkl M (2015) A review on full-scale decentralized wastewater treatment systems: techno-economical approach. Water Sci Technol 71(4):468–478

    Google Scholar 

  • Skjaerseth JB (2000) North Sea cooperation: linking international and domestic pollution control. Manchester University Press, Manchester

    Google Scholar 

  • Skjaerseth JB (2006) Protecting the North-East Atlantic: enhancing synergies by institutional interplay. Mar Policy 30(2):157–166

    Article  Google Scholar 

  • Slipko K, Reif D, Wögerbauer M, Hufnagl P, Krampe J, Kreuzinger N (2019) Removal of extracellular free DNA and antibiotic resistance genes from water and wastewater by membranes ranging from microfiltration to reverse osmosis. Water Res 164:114916

    Google Scholar 

  • Smith AL, Stadler LB, Love NG, Skerlos SJ, Raskin L (2012) Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review. Bioresour Technol 122:149–159

    Google Scholar 

  • Sørensen K, Morgenroth E (2020) Biofilm reactors. In: Chen G, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design, 2nd edn. IWA Publishing, London, pp 813–839

    Google Scholar 

  • Span D, Dominik J, Loizeau JL, Arpagaus P, Vernet JP (1994) Phosphorus evolution in three sub-alpine lakes: Annecy, Geneva and Lugano: influence of lake restoration managements. Eclogae Geol Helv 87(2):369–383

    Google Scholar 

  • Stamm C, Eggen RIL, Hering JG, Hollender J, Joss A, Schärer M (2015) Micropollutant removal from wastewater: facts and decision-making despite uncertainty. Environ Sci Technol 49(11):6374–6375

    Article  CAS  PubMed  Google Scholar 

  • Stegman S, Batstone DJ, Rozendal R, Jensen PD, Hülsen T (2021) Purple phototrophic bacteria granules under high and low upflow velocities. Water Res 190:116760

    Google Scholar 

  • Strubbe L, Pennewaerde M, Baeten JE, Volcke EIP (2022) Continuous aerobic granular sludge plants: better settling versus diffusion limitation. Chem Eng J 428:131427

    Google Scholar 

  • Sun J, Dai X, Wang Q, van Loosdrecht MCM, Ni BJ (2019) Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res 152:21–37

    Google Scholar 

  • Sutton PM, Rittmann BE, Schraa OJ, Banaszak JE, Togna AP (2011) Wastewater as a resource: a unique approach to achieving energy sustainability. Water Sci Technol 63(9):2004–2009

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Minami T (1991) Technological development of a wastewater reclamation process for recreational reuse: an approach to advanced wastewater treatment featuring reverse osmosis membrane. Water Sci Technol 23(7–9):1629–1638

    Article  CAS  Google Scholar 

  • Syron E, Casey E (2008) Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ Sci Technol 42(6):1833–1844

    Article  CAS  PubMed  Google Scholar 

  • Tang CY, Yang Z, Guo H, Wen JJ, Nghiem LD, Cornelissen E (2018) Potable water reuse through advanced membrane technology. Environ Sci Technol 52(18):10215–10223

    Article  CAS  PubMed  Google Scholar 

  • Tay JH, Tay STL, Show KY, Liu Y, Ivanov V (2004) Aerobic biomass granules for waste water treatment. Singapore Patent WO 2004/6793822, 21.09.2004

    Google Scholar 

  • Tchobanoglous G, Ruppe L, Leverenz H, Darby J (2004) Decentralized wastewater management: challenges and opportunities for the twenty-first century. Water Sci Technol Water Supply 4(1):95–102

    Article  Google Scholar 

  • Ternes T (2007) The occurrence of micropollutants in the aquatic environment: a new challenge for water management. Water Sci Technol 55(12):327–332

    Article  CAS  PubMed  Google Scholar 

  • Toh SK, Tay JH, Moy BYP, Ivanov V, Tay STL (2003) Size-effect on the physical characteristics of the aerobic granule in a SBR. Appl Microbiol Biotechnol 60(6):687–695

    Article  CAS  PubMed  Google Scholar 

  • UNEP (2005) Water and wastewater reuse—an environmentally sound approach for sustainable urban water management. United Nations Environment Programme and Global Environment Centre Foundation, Osaka, Japan, p 48

    Google Scholar 

  • Val del Rio A, Morales N, Isanta E, Mosquera-Corral A, Campos JL, Steyer JP, Carrere H (2011) Thermal pre-treatment of aerobic granular sludge: impact on anaerobic biodegradability. Water Res 45(18):6011–6020

    Google Scholar 

  • van der Roest HF, van Loosdrecht MCM (2012) Water purification, the new standard: purely based on character. Delft outlook. Magazine of Delft University of Technology. TUDelft, Delft, pp 6–11

    Google Scholar 

  • van der Roest HF, de Bruin LMM, Gademan G, Coelho F (2011) Towards sustainable waste water treatment with Dutch Nereda® technology. Water Pract Technol 6(3):59

    Google Scholar 

  • van der Roest H, van Loosdrecht M, Langkamp EJ, Uijterlinde C (2015) Recovery and reuse of alginate from granular Nereda sludge. Water21 48

    Google Scholar 

  • van der Star WRL, Abma WR, Blommers D, Mulder J-W, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht MCM (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41(18):4149–4163

    Article  CAS  PubMed  Google Scholar 

  • van der Voet E, Kleijn R, Udo De Haes HA (1996) Nitrogen pollution in the European Union—origins and proposed solutions. Environ Conserv 23(2):120–132

    Article  Google Scholar 

  • van Dijk EJH, Pronk M, van Loosdrecht MCM (2020) A settling model for full-scale aerobic granular sludge. Water Res 186:116135

    Google Scholar 

  • van Dijk EJH, van Loosdrecht MCM, Pronk M (2021) Nitrous oxide emission from full-scale municipal aerobic granular sludge. Water Res 198:117159

    Google Scholar 

  • van Dijk EJH, Haaksman VA, van Loosdrecht MCM, Pronk M (2022) On the mechanisms for aerobic granulation—model based evaluation. Water Res 216:118365

    Google Scholar 

  • van Ginkel CE (2011) Eutrophication: present reality and future challenges for South Africa. Water SA 37(5):693–702

    Google Scholar 

  • van Haandel AC, van der Lubbe JGM (2012) Handbook of biological wastewater treatment, design and optimisation of activated sludge systems, 2nd edn. IWA Publishing, London

    Google Scholar 

  • van Lier JB, Lettinga G (1999) Appropriate technologies for effective management of industrial and domestic waste waters: the decentralised approach. Water Sci Technol 40(7):171–183

    Article  Google Scholar 

  • van Lier JB, Mahmoud N, Zeeman G (2020) Anaerobic wastewater treatment. In: Chen G, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design, 2nd edn. IWA Publishing, London, pp 701–756

    Google Scholar 

  • van Loosdrecht MCM (2011) Biofilm reactors. In: Zhou Q (ed) IWA biofilm conference: processes in biofilms. IWA, Shanghai

    Google Scholar 

  • van Loosdrecht MCM, de Kreuk MK (2004) Method for the treatment of waste water with sludge granules. NL Patent WO 2004/024638, 13.10.2003

    Google Scholar 

  • Vanrolleghem P (2015) Les StaRRE de type conventionnel: une bonne option pour éliminer beaucoup d’azote. Vecteur Environ Janvier 56

    Google Scholar 

  • Verstraete W, Vlaeminck SE (2011) ZeroWasteWater: short-cycling of wastewater resources for sustainable cities of the future. Int J Sustain Dev World 18(3):253–264

    Google Scholar 

  • Verstraete W, Van de Caveye P, Diamantis V (2009) Maximum use of resources present in domestic “used water.” Bioresour Technol 100(23):5537–5545

    Google Scholar 

  • Veuillet F, Lacroix S, Bausseron A, Gonidec E, Ochoa J, Christensson M, Lemaire R (2014) Integrated fixed-film activated sludge ANITA™ Mox process—a new perspective for advanced nitrogen removal. Water Sci Technol 69(5):915–922

    Article  CAS  PubMed  Google Scholar 

  • Vij S, Moors E, Kujawa-Roeleveld K, Lindeboom REF, Singh T, de Kreuk MK (2021) From pea soup to water factories: wastewater paradigms in India and the Netherlands. Environ Sci Policy 115:16–25

    Article  Google Scholar 

  • Vogel GH (2000) Process development, 2. Evaluation. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  • von Sperling M, Schmidt M, Glasson J, Emmelin L, Helbron H (2008) Standards for wastewater treatment in Brazil. In: Schmidt M, Knopp L (eds) Standards and thresholds for impact assessment. Environmental protection in the European Union, vol 3. Springer, Berlin Heidelberg, pp 125–132

    Google Scholar 

  • Vuori L, Ollikainen M (2022) How to remove microplastics in wastewater? A cost-effectiveness analysis. Ecol Econ 192:107246

    Google Scholar 

  • Wagner J, Weissbrodt DG, Manguin V, Ribeiro da Costa RH, Morgenroth E, Derlon N (2015) Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors. Water Res 85:158–166

    Google Scholar 

  • Wang XC, ** PK (2006) Water shortage and needs for wastewater re-use in the north China. Water Sci Technol 53(9):35–44

    Article  CAS  PubMed  Google Scholar 

  • Wang XC, Qiu FG, ** PK (2006) Safety of treated water for re-use purposes—comparison of filtration and disinfection processes. Water Sci Technol 53(9):213–220

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Shao D, Westerhoff P (2017) Wastewater discharge impact on drinking water sources along the Yangtze River (China). Sci Total Environ 599–600:1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Watts S, de Kreuk M, Pijuan M, di Iaconi C, Ried A, Rossetti S, del Moro G, Mancini A, De Sanctis M, Giesen A, Pronk M, van Loosdrecht MCM, Keller J (2012) Aerobic granular biomass processes. In: Lopez A, di Iaconi C, Mascolo G, Pollice A (eds) Innovative and integrated technologies for the treatment of industrial wastewater. IWA Publishing, London, pp 1–86

    Google Scholar 

  • Wei SP, Stensel HD, Nguyen Quoc B, Stahl DA, Huang X, Lee PH, Winkler MKH (2020) Flocs in disguise? High granule abundance found in continuous-flow activated sludge treatment plants. Water Res 179:115865

    Google Scholar 

  • Weissbrodt DG (2017) Moi je travaille pour les StaRRE!: Intensification et bioprospection à haute valeur ajoutée en stations de récupération des ressources de l’eau. Bull l’ARPEA J Romand L’Environ 272:40–45

    Google Scholar 

  • Weissbrodt DG (2018) StaRRE—stations de récupération des ressources de l’eau. Aqua Gas 1:20–24

    Google Scholar 

  • Weissbrodt DG, Neu TR, Kuhlicke U, Rappaz Y, Holliger C (2013) Assessment of bacterial and structural dynamics in aerobic granular biofilms. Front Microbiol 4:175

    Google Scholar 

  • Weissbrodt DG, Holliger C, Morgenroth E (2017) Modeling hydraulic transport and anaerobic uptake by PAOs and GAOs during wastewater feeding in EBPR granular sludge reactors. Biotechnol Bioeng 114(8):1688–1702

    Article  CAS  PubMed  Google Scholar 

  • Weissbrodt DG, Laureni M, van Loosdrecht MCM, Comeau Y (2020a) Basic microbiology and metabolism. In: Chen GH, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design, 2nd edn. IWA Publishing, London

    Google Scholar 

  • Weissbrodt DG, Winkler MKH, Wells GF (2020b) Responsible science, engineering and education for water resource recovery and circularity. Environ Sci Water Res Technol 6(8):1952–1966 

    Google Scholar 

  • Wentzel MC, Comeau Y, Ekama GA, van Loosdrecht MCM, Brdjanovic D (2008) Enhanced biological phosphorus removal. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London, pp 155–220

    Google Scholar 

  • Wilderer PA (2004) Applying sustainable water management concepts in rural and urban areas: some thoughts about reasons, means and needs. Water Sci Technol 49(7):8–16

    Google Scholar 

  • Wilderer PA, McSwain BS (2004) The SBR and its biofilm application potentials. Water Sci Technol 50(10):1–10

    Google Scholar 

  • Wilderer PA, Irvine RL, Goronszy MC (2001) Sequencing batch reactor technology. IWA Publishing, London

    Google Scholar 

  • Wilfert P, Dugulan AI, Goubitz K, Korving L, Witkamp GJ, Van Loosdrecht MCM (2018) Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water Res 144:312–321

    Article  CAS  PubMed  Google Scholar 

  • Williamson K, McCarty PL (1976) A model of substrate utilization by bacterial films. J Water Pollut Control Fed 48(1):9–24

    Google Scholar 

  • Wilsenach JA, Maurer M, Larsen TA, van Loosdrecht MCM (2003) From waste treatment to integrated resource management. Water Sci Technol 48(1):1–9

    Google Scholar 

  • Winkler MKH, Meunier C, Henriet O, Mahillon J, Suarez-Ojeda ME, Del Moro G, De Sanctis M, Di Iaconi C, Weissbrodt DG (2018) An integrative review of granular sludge for the biological removal of nutrients and of recalcitrant organic matter from wastewater. Chem Eng J 336:489–502

    Article  CAS  Google Scholar 

  • Woegerbauer M, Bellanger X, Merlin C (2020) Cell-free DNA: an underestimated source of antibiotic resistance gene dissemination at the interface between human activities and downstream environments in the context of wastewater reuse. Front Microbiol 11:671

    Google Scholar 

  • Wu C, Maurer C, Wang Y, Xue S, Davis DL (1999) Water pollution and human health in China. Environ Health Perspect 107(4):251–256

    Google Scholar 

  • Wu H, Yuan Z, Zhang L, Bi J (2012) Eutrophication mitigation strategies: perspectives from the quantification of phosphorus flows in socioeconomic system of Feixi, Central China. J Clean Prod 23(1):122–137

    Google Scholar 

  • Wu J, Kong Z, Luo Z, Qin Y, Rong C, Wang T, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Xu K-Q, Kobayashi T, Kubota K, Li Y-Y (2021) A successful start-up of an anaerobic membrane bioreactor (AnMBR) coupled mainstream partial nitritation-anammox (PN/A) system: a pilot-scale study on in-situ NOB elimination, AnAOB growth kinetics, and mainstream treatment performance. Water Res 207:117783

    Google Scholar 

  • Wunderlin P, Siegrist H, Joss A (2013) Online N2O measurement: the next standard for controlling biological ammonia oxidation? Environ Sci Technol 47(17):9567–9568 

    Google Scholar 

  • WWC (2010) A new water politics—world water council 2010–2012 strategy. World Water Council, Marseille, p 24

    Google Scholar 

  • Yang Y, Wang J, **u Z, Alvarez PJJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32(7):1488–1494

    Google Scholar 

  • Yang Y, Li B, Zou S, Fang HHP, Zhang T (2014) Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res 62:97–106

    Google Scholar 

  • Zeeman G, Kujawa K, de Mes T, Hernandez L, de Graaff M, Abu-Ghunmi L, Mels A, Meulman B, Temmink H, Buisman C, van Lier J, Lettinga G (2008) Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water). Water Sci Technol 57(8):1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Zehnder AJ, Yang H, Schertenleib R (2003) Water issues: the need for action at different levels. Aquat Sci 65:1–20

    Article  Google Scholar 

  • Zhang Y, Li Y, Su F, Peng L, Liu D (2022) The life cycle of micro-nano plastics in domestic sewage. Sci Total Environ 802:149658

    Google Scholar 

  • Zhou J, McCreanor PT, Montalto F, Erdal ZK (2011) Sustainability. Water Environ Res 83(10):1414–1438

    Article  CAS  Google Scholar 

  • Zhu TT, Su ZX, Lai WX, Zhang YB, Liu YW (2021) Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Sci Total Environ 776:7234–7264

    Google Scholar 

  • Ziajahromi S, Neale PA, Rintoul L, Leusch FDL (2017) Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res 112:93–99

    Article  CAS  PubMed  Google Scholar 

  • Zlopasa J, Norder B, Koenders EAB, Picken SJ (2015) Origin of highly ordered sodium alginate/montmorillonite bionanocomposites. Macromolecules 48(4):1204–1209

    Google Scholar 

Download references

Acknowledgements

Philippe Zaza (BASF Suisse SA) and Thierry Meyer (EPFL, Institute of Chemical Sciences and Engineering) for their advice on the economic assessment of the granular sludge technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gregory Weissbrodt .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weissbrodt, D.G. (2024). General Introduction and Economic Analysis. In: Engineering Granular Microbiomes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-41009-3_1

Download citation

Publish with us

Policies and ethics

Navigation