Introduction

  • Chapter
  • First Online:
Radio-Frequency Quadrupole Accelerators

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 119 Accesses

Abstract

Since 1924, particle accelerators have been invented and developed as essential tools for basic research, energy development, medical uses, industrial applications, national security, etc. The saying “everything is difficult at the beginning” can also be applied to accelerators to some extent, as space charge effects are most pronounced in low-velocity beams, especially at high current, which is often required for modern applications. As one of the most popular front-end structures for accelerator facilities, the RFQ accelerator is the focus of this book. This chapter will give a brief introduction to the development of RF linear accelerators as well as the challenges faced by a new generation of RFQ accelerators.

If there is no solace in the fruits of our research, there is at least some consolation in the research itself. Men and women are not content to comfort themselves with tales of gods and giants, or to confine their thoughts to the daily affairs of life; they also build telescopes and satellites and accelerators and sit at their desks for endless hours working out the meaning of the data they gather.

Steven Weinberg

[Quote from The First Three Minutes: A Modern View of the Origin of the Universe (1977)]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Wideröe, Über ein neues Prinzip zur Herstellung hoher Spannungen, vol. 21. Ph.D. thesis, Technischen Hochschule Aachen, Archiv für Elektrotechnik (1928)

    Google Scholar 

  2. G. Ising, Prinzip einer Methode zur Herstellung von Kanalstrahlen hoher Voltzahl. Ark. Mat. Astron. Fys. 18, 30 (1924)

    Google Scholar 

  3. K. Bethge, Industrial applications of accelerators. Nucl. Phys. News 9/1 (1999)

    Google Scholar 

  4. E. Haussecker, A. Chao, Influence of accelerator science on physics research. Phys. Perspect. 13, Article Number: 146 (2011)

    Google Scholar 

  5. N. Holtkamp, Status of the SNS linac: an overview, in Proceedings of LINAC (2004)

    Google Scholar 

  6. S.N. Fu, S. Wang, Operation status and upgrade of CSNS, in Proceedings of IPAC (2019)

    Google Scholar 

  7. I.D. Kittelmann et al., Ionisation chamber based beam loss monitoring system for the ESS linac, in Proceedings of IBIC (2019)

    Google Scholar 

  8. H. Podlech et al., The MYRRHA-project, in Proceedings of NAPAC (2019)

    Google Scholar 

  9. S. Fu et al., Chinese plan for ADS and CSNS, in Proceedings of SRF (2011)

    Google Scholar 

  10. J. Wei et al., The FRIB project – accelerator challenges and progress, in Proceedings of HIAT (2012)

    Google Scholar 

  11. M. Kwon, Y.S. Chung, Y.K. Kwon, T.S. Shin, Y.U. Sohn, RAON, Korean heavy ion accelerator facility. Kasokuki 17(4) (2020)

    Google Scholar 

  12. T. Junquera et al., Status of the construction of the SPIRAL2 accelerator at GANIL, in Proceedings of LINAC (2008)

    Google Scholar 

  13. V. Lebedev (ed.), The PIP-II reference design report. FNAL report no. FERMILAB-DESIGN-2015-01 (2015)

    Google Scholar 

  14. D. Jimenez-Rey et al., Commissioning of test bench at LIPAc accelerator/BI commissioning LIPAc, in Proceedings of ARIES Workshop (2021)

    Google Scholar 

  15. Y. Liu et al., Progresses of J-PARC linac commissioning, in Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan (2017)

    Google Scholar 

  16. J.C. Yang et al., High intensity Heavy Ion Accelerator Facility (HIAF) in China. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 317(Part B), 15 (2013)

    Google Scholar 

  17. R.W. Garnett, LANSCE accelerator update and future plans. IOP Conf. Ser.: J. Phys.: Conf. Ser. 1021 (2018)

    Google Scholar 

  18. D. Koser, Development of a 108 MHz 4-rod CW RFQ-design for high duty cycle acceleration of heavy ion beams at the GSI-HLI. Ph.D. thesis, Goethe University Frankfurt (2020)

    Google Scholar 

  19. M. Vretenar, The radio frequency quadrupole. CERN Accelerator School: High Power Hadron Machines (2011)

    Google Scholar 

  20. I.M. Kapchinsky, V.A. Teplyakov, A linear ion accelerator with spatially uniform hard focusing. SLAC report no. SLAC-TRANS-0099 (Transl. T. Watt from Preprint ITEP-673) (1969)

    Google Scholar 

  21. N.I. Golosai et al., Tests on the initial section of an accelerator with quadrupole HF focusing (Transl. Soviet Atomic Energy) (1975) (in Russian)

    Google Scholar 

  22. R.W. Hamm, K.R. Crandall, C.W. Fuller, RF quadrupole linac: a new low-energy accelerator. LANL report no. LA-UR-80-1091 (1980)

    Google Scholar 

  23. H. Klein, Development of the different RFQ accelerating structures and operation experience, in Proceedings of PAC (1983)

    Google Scholar 

  24. A. Schempp et al., Status of the Frankfurt zero-mode proton RFQ. IEEE Trans. Nucl. Sci. 30(4) (1983)

    Google Scholar 

  25. D. Schrage et al., A flight-qualified RFQ for the BEAR project, in Proceedings of LINAC (1988)

    Google Scholar 

  26. https://home.cern/science/accelerators/large-hadron-collider

  27. E. Tanke, M. Vretenar, M. Weiss, Measurement of the CERN high intensity RFQ, in Proceedings of EPAC (1992)

    Google Scholar 

  28. U. Ratzinger, K. Kaspar, E. Malwitz, S. Minaev, R. Tiede, The GSI 36 MHz high-current IH-type RFQ and HIIF–relevant extensions. Nucl. Instrum. Methods Phys. Res. Sect. A 415 (1998)

    Google Scholar 

  29. L.M. Young, Operations of the LEDA resonantly coupled RFQ, in Proceedings of PAC (2001)

    Google Scholar 

  30. G. Bisoffi et al., First results with the full niobium superconducting RFQ resonator at INFN-LNL, in Proceedings of EPAC (2000)

    Google Scholar 

  31. M. Vretenar et al., High-frequency compact RFQs for medical and industrial applications, in Proceedings of LINAC (2016)

    Google Scholar 

  32. W. Paul, H. Steinwedel, Ein neues Massenspektrometer ohne Magnetfeld. Z. Naturforschung 8a (1953)

    Google Scholar 

  33. R.H. Stokes, K.R. Crandall, J.E. Stovall, D.A. Swenson, RF quadrupole beam dynamics, in Proceedings of PAC (1979)

    Google Scholar 

  34. R.E. Laxdal, RFQ-IH radioactive beam linac for ISAC. AIP Conf. Proc. 473, 546 (1999)

    ADS  Google Scholar 

  35. M. Syha, Beam dynamics design of the FAIR proton-linac RFQ and design study of a compact 325MHz RFQ. Ph.D. thesis, Goethe University Frankfurt (2021)

    Google Scholar 

  36. R.W. Müller, Layout of a high-intensity linac for very heavy ions with RFQ focusing. GSI report no. 79-7 (1979)

    Google Scholar 

  37. A. Schempp, 4-rod RFQs. Talk at GSI (2008)

    Google Scholar 

  38. H. Lancaster, R. Gough, D. Howard, H.R. Schneider, Vane coupling rings simplify tuning of the LBL RFQ accelerator, in Proceedings of 12th International Conference on High-Energy Accelerators (1983)

    Google Scholar 

  39. A. Ueno, T. Kato, Y. Yamazaki, The π-mode stabilizing loop for four-vane type RFQs, in Proceedings of LINAC (1990)

    Google Scholar 

  40. D.D. Armstrong, W.D. Cornelius, F.O. Purser, R.A. Jameson, T.P. Wangler, RFQ development at Los Alamos. LANL report no. LA-UR-84-498 (1984)

    Google Scholar 

  41. R.A. Jameson, Introduction to RFQ session, in Proceedings of LINAC (1984)

    Google Scholar 

  42. L.M. Young, Tuning and stabilization of RFQ’s, in Proceedings of LINAC (1990)

    Google Scholar 

  43. A. Schempp, Overview of recent RFQ projects, in Proceedings of LINAC (2008)

    Google Scholar 

  44. B. Hofmann, Untersuchungen an einem RFQ-Beschleuniger für hohe Betriebsfrequenzen. Diplomarbeit, Goethe University Frankfurt (2004)

    Google Scholar 

  45. K. Kümpel, C. Lenz, N.F. Petry, H. Podlech, A. Bechtold, C. Zhang, Dipole compensation of the 176 MHz MYRRHA RFQ, in Proceedings of IPAC (2017)

    Google Scholar 

  46. S. Wunderlich, C. Zhang, New method for overcoming dipole effects of 4-rod RFQs, in Proceedings of HIAT (2022)

    Google Scholar 

  47. D. Koser, C. Zhang, H. Podlech, K. Kümpel, A new method to compensate the longitudinal component of the end-fields in 4-Rod RFQ accelerators. Nucl. Instrum. Methods Phys. Res. Sect. A 961 (2020)

    Google Scholar 

  48. J.S. Schmidt, B. Koubek, A. Schempp, Simulations on the boundary fields of 4-rod RFQ electrodes, in Proceedings of IPAC (2013)

    Google Scholar 

  49. K. Schindl, Space Charge. CERN Accelerator School: Intermediate Course on Accelerator Physics (2003)

    Google Scholar 

  50. F. Gerigk, K. Bongardt, I. Hofmann, High current linac design with examples of resonances and halo, in Proceedings of LINAC (2002)

    Google Scholar 

  51. I. Mardor et al., Status of the SARAF CW 40 MeV proton/deuteron accelerator, in Proceedings of PAC (2009)

    Google Scholar 

  52. T.J. Boyd Jr., Kilpatrick’s criterion. Los Alamos Group AT-1 report no. AT-1:82-28 (1982)

    Google Scholar 

  53. H. Vernon Smith Jr., J.D. Schneider, Status report on the Low-Energy Demonstration Accelerator (LEDA), in Proceedings of LINAC (2000)

    Google Scholar 

  54. T.P. Wangler, RF Linear Accelerators (Wiley-VCH Verlag GmbH & Co. KGaA, 2008). ISBN: 978-3-527-40680-7

    Google Scholar 

  55. M. Reiser, Theory and Design of Charged Particle Beams, Second, Updated and Expanded edn. (Wiley‐VCH Verlag GmbH & Co. KGaA, 2008). Print ISBN: 9783527407415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, C. (2023). Introduction. In: Radio-Frequency Quadrupole Accelerators. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-40967-7_1

Download citation

Publish with us

Policies and ethics

Navigation