Barley Sprouts

  • Chapter
  • First Online:
Advances in Plant Sprouts

Abstract

The need for functional foods has been increasing significantly in recent years due to the accelerating life’s pace and the higher occurrence of chronic illnesses. As a result of its health advantages and good flavour, sprouts are getting popularity among people worldwide. The extensive range of nutrients found in barley (Hordeum vulgare L.) sprouts, including functional carbohydrates, γ-aminobutyric acid, polyphenolic compounds, minerals and vitamins, and β-glucan, contributes to its many health advantages. This chapter covers the process of sprouting and several biochemical alterations that occur during the germination of barley seeds. Further, the techno-functional properties of sprouts are also highlighted which are useful during preparation of food formulations. Finally, the health benefits of germinated barley and challenges with sprouts production like microbiological safety are mentioned. Being dense in numerous functional ingredients, barley sprouts provides physiological benefits and should be included in diet as functional ingredients with a wide range of health advantages and therapeutic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdi, N., Wasti, S., Salem, M. B., El Faleh, M., & Mallek-Maalej, E. (2016). Study on germination of seven barley cultivars (Hordeum vulgare L.) under salt stress. The Journal of Agricultural Science, 8(8), 88–97.

    Article  Google Scholar 

  • Aborus, N. E., Čanadanović-Brunet, J., Ćetković, G., Šaponjac, V. T., Vulić, J., & Ilić, N. (2017). Powdered barley sprouts: Composition, functionality and polyphenol digestibility. International Journal of Food Science and Technology, 52(1), 231–238.

    Article  CAS  Google Scholar 

  • Afify, A. E. M. M., El-Beltagi, H. S., Abd El-Salam, S. M., & Omran, A. A. (2012). Protein solubility, digestibility and fractionation after germination of sorghum varieties. PLoS One, 7(2), e31154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad, M., Gani, A., Shah, A., Gani, A., & Masoodi, F. A. (2016). Germination and microwave processing of barley (Hordeum vulgare L) changes the structural and physicochemical properties of β-D-glucan & enhances its antioxidant potential. Carbohydrate Polymers, 153, 696–702.

    Article  CAS  PubMed  Google Scholar 

  • Amri, B., Khamassi, K., Ali, M. B., da Silva, J. A. T., & Kaab, L. B. B. (2016). Effects of gibberellic acid on the process of organic reserve mobilization in barley grains germinated in the presence of cadmium and molybdenum. South African Journal of Botany, 106, 35–40.

    Article  CAS  Google Scholar 

  • Babenko, L. M., Smirnov, O. E., Romanenko, K. O., Trunova, O. K., & Kosakivska, I. V. (2019). Phenolic compounds in plants: Biogenesis and functions. Ukrainian Biochemical Journal, 91(3), 5–18.

    Article  CAS  Google Scholar 

  • Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrients, 11(2), 421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley, J. D., & Black, M. (2013). Seeds: Physiology of development and germination. Springer.

    Book  Google Scholar 

  • Boukid, F., Prandi, B., Buhler, S., & Sforza, S. (2017). Effectiveness of germination on protein hydrolysis as a way to reduce adverse reactions to wheat. Journal of Agricultural and Food Chemistry, 65(45), 9854–9860.

    Article  CAS  PubMed  Google Scholar 

  • Byun, A. R., Chun, H., Lee, J., Lee, S. W., Lee, H. S., & Shim, K. W. (2015). Effects of a dietary supplement with barley sprout extract on blood cholesterol metabolism. Evidence-Based Complementary and Alternative Medicine, 2015, 7.

    Article  Google Scholar 

  • Chu, S., Hasjim, J., Hickey, L. T., Fox, G., & Gilbert, R. G. (2014). Structural changes of starch molecules in barley grains during germination. Cereal Chemistry, 91(5), 431–437.

    Article  CAS  Google Scholar 

  • Chung, T. Y., Nwokolo, E. N., & Sim, J. S. (1989). Compositional and digestibility changes in sprouted barley and canola seeds. Plant Foods for Human Nutrition, 39(3), 267–278.

    Article  CAS  PubMed  Google Scholar 

  • Ciosek, Ż., Kot, K., Kosik-Bogacka, D., Łanocha-Arendarczyk, N., & Rotter, I. (2021). The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue. Biomolecules & Therapeutics, 11(4), 506.

    Article  CAS  Google Scholar 

  • Contreras-Jiménez, B., Del Real, A., Millan-Malo, B. M., Gaytán-Martínez, M., Morales-Sánchez, E., & Rodríguez-García, M. E. (2019). Physicochemical changes in barley starch during malting. Journal of the Institute of Brewing, 125(1), 10–17.

    Article  Google Scholar 

  • Danisova, C., Holotnakova, E., Hozova, B., & Buchtova, V. (1994). Effect of germination on a range of nutrients of selected grains and legumes. Acta Alimentaria (Budapest), 23(3), 287–298.

    Google Scholar 

  • Desai, A. D., Kulkarni, S. S., Sahoo, A. K., Ranveer, R. C., & Dandge, P. B. (2010). Effect of supplementation of malted ragi flour on the nutritional and sensorial quality characteristics of cake. Advance Journal of Food Science and Technology, 2(1), 67–71.

    Google Scholar 

  • Devi, C. B., Kushwaha, A., & Kumar, A. (2015). Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). Journal of Food Science and Technology, 52(10), 6821–6827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • di Vaio, M., Cahu, T. B., Marchesano, V., Vestri, A., Blennow, A., & Sagnelli, D. (2023). Barley carbohydrates as a sustainable and healthy food ingredient. In Reference module in food science. https://doi.org/10.1016/B978-0-12-823960-5.00038-X

    Chapter  Google Scholar 

  • Ding, J., & Feng, H. (2019). Controlled germination for enhancing the nutritional value of sprouted grains. In Sprouted grains (pp. 91–112). AACC International Press.

    Chapter  Google Scholar 

  • Do, T. T. D. (2016). Evaluation of antioxidant capacity and vitamin E content in barley grains (Hordeum vulgare L.) and the impact of processing and storage. Doctoral dissertation.

    Google Scholar 

  • Donkor, O. N., Stojanovska, L., Ginn, P., Ashton, J., & Vasiljevic, T. (2012). Germinated grains–sources of bioactive compounds. Food Chemistry, 135(3), 950–959.

    Article  CAS  PubMed  Google Scholar 

  • Edney, M. J., Legge, W. G., Izydorczyk, M. S., Demeke, T., & Rossnagel, B. G. (2013). Identification of barley breeding lines combining preharvest sprouting resistance with “Canadian-type” malting quality. Crop Science, 53(4), 1447–1454.

    Article  Google Scholar 

  • EFSA (European Food Safety Authority). (2011). Scientific opinion on the risk posed by Shiga toxin-producing Escherichia coli (STEC) and other pathogenic bacteria in seeds and sprouted seeds. EFSA Journal, 9(11), 1–101.

    Google Scholar 

  • Faltermaier, A., Zarnkow, M., Becker, T., Gastl, M., & Arendt, E. K. (2015). Common wheat (Triticum aestivum L.): Evaluating microstructural changes during the malting process by using confocal laser scanning microscopy and scanning electron microscopy. European Food Research and Technology, 241(2), 239–252.

    Article  CAS  Google Scholar 

  • Farooqui, A. S., Syed, H. M., Talpade, N. N., Sontakke, M. D., & Ghatge, P. U. (2018). Influence of germination on chemical and nutritional properties of barley flour. Journal of Pharmacognosy and Phytochemistry, 7(2), 3855–3858.

    CAS  Google Scholar 

  • Fazaeli, H., Golmohammadi, H. A., Tabatabayee, S. N., & Asghari-Tabrizi, M. (2012). Productivity and nutritive value of barley green fodder yield in hydroponic system. World Applied Sciences Journal, 16(4), 531–539.

    CAS  Google Scholar 

  • Fernández-Orozco, R., Zielinski, H., Piskula, M. K., Kozlowska, H., & Vidal-Valverde, C. (2008). Kinetic study of the antioxidant capacity during germination of Vigna radiate cv. emmerald, Glycine max cv. jutro and Glycine max cv. merit. Food Chemistry, 111, 622–630.

    Article  Google Scholar 

  • Fincher, G. B., & Stone, B. A. (1986). Cell walls and their components in cereal grain technology. Advances in Cereal Science and Technology, 8, 207–295.

    CAS  Google Scholar 

  • Gan, R. Y., Lui, W. Y., Wu, K., Chan, C. L., Dai, S. H., Sui, Z. Q., & Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science and Technology, 59, 1–14.

    Article  CAS  Google Scholar 

  • Ge, X., Saleh, A. S., **g, L., Zhao, K., Su, C., Zhang, B., et al. (2021). Germination and drying induced changes in the composition and content of phenolic compounds in naked barley. Journal of Food Composition and Analysis, 95, 103594.

    Article  CAS  Google Scholar 

  • Glagoleva, A. Y., Vikhorev, A. V., Shmakov, N. A., Morozov, S. V., Chernyak, E. I., Vasiliev, G. V., et al. (2022). Features of activity of the phenylpropanoid biosynthesis pathway in melanin-accumulating barley grains. Frontiers in Plant Science, 13, 923717.

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham, I. A. (2008). Storage oil mobilization in seeds. Annual Review of Plant Biology, 59, 115–142.

    Article  CAS  PubMed  Google Scholar 

  • Guajardo-Flores, D., Serna-Saldivar, S. O., & Gutierrez-Uribe, J. A. (2013). Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chemistry, 141, 1497–1503.

    Article  CAS  PubMed  Google Scholar 

  • Gualano, N. A., & Benech-Arnold, R. L. (2009). Predicting pre-harvest sprouting susceptibility in barley: Looking for “sensitivity windows” to temperature throughout grain filling in various commercial cultivars. Field Crops Research, 114(1), 35–44.

    Article  Google Scholar 

  • Guan, Q., Ding, X. W., Jiang, R., Ouyang, P. L., Gui, J., Feng, L., et al. (2019). Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food Chemistry, 299, 125095.

    Article  CAS  PubMed  Google Scholar 

  • Guine, R. D. P. F., & dos Reis Correia, P. M. (Eds.). (2013). Engineering aspects of cereal and cereal-based products (p. 4683). CRC Press.

    Google Scholar 

  • Guo, X. B., Li, T., Tang, K. X., & Liu, R. H. (2012). Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). Journal of Agricultural and Food Chemistry, 60, 11050e11055.

    Article  Google Scholar 

  • Gupta, M., Abu-Ghannam, N., & Gallaghar, E. (2010). Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 318–328.

    Article  CAS  PubMed  Google Scholar 

  • Ha, K. S., Jo, S. H., Mannam, V., Kwon, Y. I., & Apostolidis, E. (2016). Stimulation of phenolics, antioxidant and α-glucosidase inhibitory activities during barley (Hordeum vulgare L.) seed germination. Plant Foods for Human Nutrition, 71(2), 211–217.

    Article  CAS  PubMed  Google Scholar 

  • Hoang, H. H., Sechet, J., Bailly, C., Leymarie, J., & Corbineau, F. (2014). Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation. Plant, Cell & Environment, 37(6), 1393–1403.

    Article  CAS  Google Scholar 

  • Hucker, B., Wakeling, L., & Vriesekoop, F. (2012). Investigations into the thiamine and riboflavin content of malt and the effects of malting and roasting on their final content. Journal of Cereal Science, 56(2), 300–306.

    Article  CAS  Google Scholar 

  • Ikram, A., Saeed, F., Afzaal, M., Imran, A., Niaz, B., Tufail, T., et al. (2021). Nutritional and end-use perspectives of sprouted grains: A comprehensive review. Food Science & Nutrition, 9(8), 4617–4628.

    Article  Google Scholar 

  • Iwu, C. D., & Okoh, A. I. (2019). Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: A review. International Journal of Environmental Research and Public Health, 16(22), 4407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jomova, K., Makova, M., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., et al. (2022). Essential metals in health and disease. Chemico-Biological Interactions, 2022, 110173.

    Article  Google Scholar 

  • Kanauchi, O., Oshima, T., Andoh, A., Shioya, M., & Mitsuyama, K. (2008). Germinated barley foodstuff ameliorates inflammation in mice with colitis through modulation of mucosal immune system. Scandinavian Journal of Gastroenterology, 43(11), 1346–1352.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M. J., Kawk, H. W., Kim, S. H., Lee, H. J., Seo, J. W., Kim, J. T., et al. (2021). Anti-obesity effect of hot water extract of barley sprout through the inhibition of adipocyte differentiation and growth. Meta, 11(9), 610.

    CAS  Google Scholar 

  • Koehler, P., Hartmann, G., Wieser, H., & Rychlik, M. (2007). Changes of folates, dietary fiber, and proteins in wheat as affected by germination. Journal of Agricultural and Food Chemistry, 55(12), 4678.

    Article  CAS  PubMed  Google Scholar 

  • Kok, Y. J., Ye, L., Muller, J., Ow, D. S. W., & Bi, X. (2019). Brewing with malted barley or raw barley: What makes the difference in the processes? Applied Microbiology and Biotechnology, 103(3), 1059–1067.

    Article  CAS  PubMed  Google Scholar 

  • Kruma, Z., Tomsone, L., Galoburda, R., Straumite, E., Kronberga, A., & Åssveen, M. (2016). Total phenols and antioxidant capacity of hull-less barley and hull-less oats. Agronomy Research, 14(2), 1361–1371.

    Google Scholar 

  • Lee, J. H., Lee, S. Y., Kim, B., Seo, W. D., Jia, Y., Wu, C., et al. (2015). Barley sprout extract containing policosanols and polyphenols regulate AMPK, SREBP2 and ACAT2 activity and cholesterol and glucose metabolism in vitro and in vivo. Food Research International, 72, 174–183.

    Article  CAS  Google Scholar 

  • Limón, R. I., Peñas, E., Martínez-Villaluenga, C., & Frias, J. (2014). Role of elicitation on the health-promoting properties of kidney bean sprouts. LWT- Food Science and Technology, 56(2), 328–334.

    Article  Google Scholar 

  • Liu, H., Zhang, X., Cui, Z., Ding, Y., Zhou, L., & Zhao, X. (2022). Cold plasma effects on the nutrients and microbiological quality of sprouts. Food Research International, 159, 111655.

    Article  CAS  PubMed  Google Scholar 

  • Lotfy, T. M. R. F., Agamy, N., & Younes, M. N. (2021). The effect of germination in barely on its chemical composition, nutritional value and rheological properties. Home Economics Journal, 37(2), 81–108.

    Google Scholar 

  • Ma, P., Li, T., Ji, F., Wang, H., & Pang, J. (2015). Effect of GABA on blood pressure and blood dynamics of anesthetic rats. International Journal of Clinical and Experimental Medicine, 8(8), 14296.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Z., Bykova, N. V., & Igamberdiev, A. U. (2017). Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. The Crop Journal, 5(6), 459–477.

    Article  Google Scholar 

  • Ma, X., Liu, Y., Liu, J., Zhang, J., & Liu, R. (2020). Changes in starch structures and in vitro digestion characteristics during maize (Zea mays L.) germination. Food Science & Nutrition, 8(3), 1700–1708.

    Article  CAS  Google Scholar 

  • Marton, M., Mandoki, Z. S., Csapo-Kiss, Z. S., & Csapo, J. (2010). The role of sprouts in human nutrition. A review. The Acta Universitatis Sapientiae, 3, 81–117.

    Google Scholar 

  • Masood, T., Shah, H. U., & Zeb, A. (2014). Effect of sprouting time on proximate composition and ascorbic acid level of mung bean (Vigna radiate L.) and chickpea (Cicer arietinum L.) seeds. The Journal of Animal and Plant Sciences, 24(3), 850.

    Google Scholar 

  • Miano, A. C., Forti, V. A., Abud, H. F., Gomes-Junior, F. G., Cicero, S. M., & Augusto, P. E. D. (2015). Effect of ultrasound technology on barley seed germination and vigour. Seed Science and Technology, 43(2), 297–302.

    Article  Google Scholar 

  • Miyahira, R. F., & Antunes, A. E. C. (2021). Bacteriological safety of sprouts: A brief review. International Journal of Food Microbiology, 352, 109266.

    Article  PubMed  Google Scholar 

  • Munkager, V., Vestergård, M., Priemé, A., Altenburger, A., de Visser, E., Johansen, J. L., & Ekelund, F. (2020). AgNO3 sterilizes grains of barley (Hordeum vulgare) without inhibiting germination – A necessary tool for plant–microbiome research. Planning Theory, 9(3), 372.

    CAS  Google Scholar 

  • Nakamura, S. (2018). Grain dormancy genes responsible for preventing pre-harvest sprouting in barley and wheat. Breeding Science, 17138, 295–304.

    Article  Google Scholar 

  • Nonogaki, H., Bassel, G. W., & Bewley, J. D. (2010). Germination – Still a mystery. Plant Science, 179(6), 574–581.

    Article  CAS  Google Scholar 

  • Ochoa-de la Paz, L. D., Gulias-Cañizo, R., Ruíz-Leyja, E. D., Sánchez-Castillo, H., & Parodí, J. (2021). The role of GABA neurotransmitter in the human central nervous system, physiology, and pathophysiology. Revista Mexicana de Neurociencia, 22(2), 67–76.

    Article  Google Scholar 

  • Olaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: A review. Food Microbiology, 32(1), 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz, L. T., Velasco, S., Treviño, J., Jiménez, B., & Rebolé, A. (2021). Changes in the nutrient composition of barley grain (Hordeum vulgare L.) and of morphological fractions of sprouts. Scientifica, 2021, 9968864.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osman, A. M., Coverdale, S. M., Cole, N., Hamilton, S. E., De Jersey, J., & Inkerman, P. A. (2002). Characterisation and assessment of the role of barley malt endoproteases during malting and mashing. Journal of the Institute of Brewing, 108(1), 62–67.

    Article  CAS  Google Scholar 

  • Pagand, J., Heirbaut, P., Pierre, A., & Pareyt, B. (2017). The magic and challenges of sprouted grains. Cereal Foods World, 62(5), 221–226.

    Article  CAS  Google Scholar 

  • Pajak, P., Socha, R., Galkowska, D., Roznowski, J., & Fortuna, T. (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143, 300e306.

    Article  Google Scholar 

  • Park, Y. E., Kim, J., Kim, H. W., & Chun, J. (2022). Rheological, textural, and functional characteristics of 3D-printed cheesecake containing guava leaf, green tea, and barley sprout powders. Food Bioscience, 47, 101634.

    Article  CAS  Google Scholar 

  • Perveen, A., Naqvi, I. M., Shah, R., & Hasnain, A. (2008). Comparative germination of barley seeds (Hordeum vulgare) soaked in alkaline media and effects on starch and soluble proteins. Journal of Applied Sciences and Environmental Management, 12(3), 55457.

    Google Scholar 

  • Ramakrishna, R., Sarkar, D., Manduri, A., Iyer, S. G., & Shetty, K. (2017). Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy. Journal of Food Science and Technology, 54(11), 3666–3678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico, D., Peñas, E., García, M. D. C., Martínez-Villaluenga, C., Rai, D. K., Birsan, R. I., et al. (2020). Sprouted barley flour as a nutritious and functional ingredient. Food, 9(3), 296.

    Article  CAS  Google Scholar 

  • Sen, M. K., Jamal, M. A. H. M., & Nasrin, S. (2013). Sterilization factors affect seed germination and proliferation of Achyranthes aspera cultured in vitro. Environmental and Experimental Botany, 11, 119–123.

    Google Scholar 

  • Senhofa, T. Ķ. S., Galoburda, R., Cinkmanis, I., & Martins Sabovics, I. (2016). Effects of germination on chemical composition of hull-less spring cereals. Research for Rural Development, 1, 91.

    Google Scholar 

  • Shaik, S. S., Carciofi, M., Martens, H. J., Hebelstrup, K. H., & Blennow, A. (2014). Starch bioengineering affects cereal grain germination and seedling establishment. Journal of Experimental Botany, 65(9), 2257–2270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, P., & Gujral, H. S. (2010). Antioxidant and polyphenol oxidase activity of germinated barley and its milling fractions. Food Chemistry, 120(3), 673–678.

    Article  CAS  Google Scholar 

  • Sharma, S., Saxena, D. C., & Riar, C. S. (2016). Analysing the effect of germination on phenolics, dietary fibres, minerals and γ-amino butyric acid contents of barnyard millet (Echinochloa frumentaceae). Food Bioscience, 13, 60–68.

    Article  CAS  Google Scholar 

  • Singkhornart, S., & Ryu, G. H. (2011). Effect of soaking time and stee** temperature on biochemical properties and γ-aminobutyric acid (GABA) content of germinated wheat and barley. Preventive Nutrition and Food Science, 16(1), 67–73.

    Article  CAS  Google Scholar 

  • Sonia, A., Sudesh, J., Neelam, K., & Rajni, G. (2009). Effect of germination and probiotic fermentation on antinutrients and in vitro digestibility of starch and protein and availability of minerals from barley based food mixtures. The Journal of Food Science and Technology (Mysore), 46(4), 359–362.

    Google Scholar 

  • Springer, T. L., & Mornhinweg, D. W. (2019). Seed germination and early seedling growth of barley at negative water potentials. Agronomy, 9(11), 671.

    Article  CAS  Google Scholar 

  • Sung, H. G., Shin, H. T., Ha, J. K., Lai, H. L., Cheng, K. J., & Lee, J. H. (2005). Effect of germination temperature on characteristics of phytase production from barley. Bioresource Technology, 96(11), 1297–1303.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, C., Nyman, M., Andersson, R., & Alminger, M. (2016). Effects of variety and stee** conditions on some barley components associated with colonic health. Journal of the Science of Food and Agriculture, 96(14), 4821–4827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinje, M. A., Duke, S. H., & Henson, C. A. (2015). Comparison of factors involved in starch degradation in barley germination under laboratory and malting conditions. Journal of the American Society of Brewing Chemists, 73(2), 195–205.

    Article  CAS  Google Scholar 

  • Waleed, A. A., Mahdi, A. A., Al-Maqtari, Q. A., Sajid, B. M., Al-Adeeb, A., Ahmed, A., et al. (2021). Characterization of molecular, physicochemical, and morphological properties of starch isolated from germinated highland barley. Food Bioscience, 42, 101052.

    Article  Google Scholar 

  • Watchararparpaiboon, W., Laohakunjit, N., & Kerdchoechuen, O. (2010). An improved process for high quality and nutrition of brown rice production. Food Science and Technology International, 16(2), 147–158.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z. Y., Song, L. X., Feng, S. B., Liu, Y. C., He, G. Y., Yioe, Y., et al. (2012). Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds. Journal of Agricultural and Food Chemistry, 60, 8606e8615.

    Article  Google Scholar 

  • Xu, J. G., Tian, C. R., Hu, Q. P., Luo, J. Y., Wang, X. D., & Tian, X. D. (2009). Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during stee** and germination. Journal of Agricultural and Food Chemistry, 57(21), 10392–10398.

    Article  CAS  PubMed  Google Scholar 

  • Yaqoob, S., Baba, W., Masoodi, F. A., Bazaz, R., & Shafi, M. (2017). Effect of sprouting on barley flour and cookie quality of wheat–barley flour blends. Forum of Nutrition, 16, 175–183.

    CAS  Google Scholar 

  • Yogesh, K., & Matta, N. K. (2011). Changing protein profiles in develo** and germinating barley seeds. Annals of Biological Research, 2(6), 318–329.

    Google Scholar 

  • Zempleni, J., Suttie, J. W., Gregory, J. F., III, & Stover, P. J. (Eds.). (2013). Handbook of vitamins. CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, M., Rana, S. (2023). Barley Sprouts. In: Majid, I., Kehinde, B.A., Dar, B., Nanda, V. (eds) Advances in Plant Sprouts. Springer, Cham. https://doi.org/10.1007/978-3-031-40916-5_2

Download citation

Publish with us

Policies and ethics

Navigation