Cold-Water Corals of the World: Gulf of Mexico

  • Chapter
  • First Online:
Cold-Water Coral Reefs of the World

Part of the book series: Coral Reefs of the World ((CORW,volume 19))

Abstract

The Gulf of Mexico is a semi-enclosed sea that borders the USA and Mexico and covers approximately 1.5 million square kilometers. The northern Gulf is topographically complex and is a rich source of oil and gas deposits, which has led to a great deal of research on benthic ecosystems from the coastal zone to the deep sea. While not fully explored, the distribution of cold seeps and deep corals in the northern Gulf is reasonably well described. The eastern Gulf has a moratorium on energy industry development and consequently less exploration and research has been conducted in this region; however, recent explorations have revealed deep scleractinian reefs on the west Florida slope and extensive octocoral gardens on the deep escarpment. The Gulf is a productive sea with lucrative fisheries in addition to oil and gas. Exploitation of natural resources and potential climate change impacts threaten vulnerable ecosystems in the Gulf, including those in the deep sea. This chapter describes the oceanography and geology of the Gulf of Mexico, presents the current state of the knowledge of cold-water coral distribution, physiology and ecology, and provides an assessment of the threats to these vulnerable ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adkins JF, Cheng H, Boyle EA et al (1998) Deep-sea coral evidence for rapid change in ventilation history of the deep north Atlantic 15,400 years ago. Science 280:725–728

    Article  CAS  PubMed  Google Scholar 

  • Andrews AH, Cordes EE, Mahoney MM et al (2002) Age, growth, and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471:101–110

    Article  Google Scholar 

  • Baco AR, Cairns SD (2012) Comparing molecular variation to morphological species designations in the deep-sea coral Narella reveals new insights into seamount coral ranges. PLos One 7:e45555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsam WL, Beeson JP (2003) Sea-floor sediment distribution in the Gulf of Mexico. Deep Sea Res Pt I 50:1421–1444

    Article  CAS  Google Scholar 

  • Barnich R, Beuck L, Freiwald A (2013) Scale worms (Polychaeta: Aphroditiformia) associated with cold-water corals in the eastern Gulf of Mexico. J Mar Biol Assoc U K 93:2129–2143

    Article  Google Scholar 

  • Baumberger RE, Brown-Peterson NJ, Reed JK et al (2010) Spawning aggregation of beardfish, Polymixia lowei, in a deep-water sinkhole off the Florida Keys. Copeia 1:41–46

    Article  Google Scholar 

  • Baussant T, Nilsen M, Ravagnan E et al (2017) Physiological responses and lipid storage of the coral Lophelia pertusa at varying food density. J Toxicol Env Health A 80:266–284

    Article  CAS  Google Scholar 

  • Becker EL, Cordes EE, Macko SA, Fisher CR (2009) Importance of seep primary production to Lophelia pertusa and associated fauna in the Gulf of Mexico. Deep Sea Res Pt I 56:786–800

    Article  CAS  Google Scholar 

  • Benfield MC, Kupchik MJ, Palandro DA et al (2019) Documenting deep-water habitat utilization by fishes and invertebrates associated with Lophelia pertusa on a petroleum platform on the outer continental shelf of the Gulf of Mexico using a remotely operated vehicle. Deep Sea Res Pt I 149:103045

    Article  Google Scholar 

  • Ben-Haim Y, Thompson F, Thompson MC et al (2003) Vibriocoralliilyticus sp. nov, a temperature-dependent pathogen of the coral Pocilloporadamicornis. Int J Syst Evol Microbiol 53:309–315

    Article  CAS  PubMed  Google Scholar 

  • Blum MD, Milliken KT, Pecha MA et al (2017) Detrital-Zircon records of Cenomanian, Peleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin-floor fans. Geosphere 13:1–37

    Article  Google Scholar 

  • BOEM. Northern Gulf of Mexico Deep-water Bathymetry Grid from 3D Seismic. https://www.boem.gov/oil-gas-energy/map**-and-data/map-gallery/boem-northern-gulf-mexico-deepwater-bathymetry-grid-3d

  • Bohrmann G, Schenck S (2004) RV SONNE cruise report SO174, OTEGA II, Balboa-Corpus Christi - Miami (1 October–12 November 2003), GEOMAR Report 117

    Google Scholar 

  • Boland GS, Etnoyer PJ, Fisher CR, Hickerson E (2017) State of deep-sea coral and sponge ecosystems in the Gulf of Mexico Region: Texas to the Florida Straits. In: Hourigan TF, Etnoyer PJ, Cairns SD (eds) The state of deep-sea coral and sponge ecosystems of the United States. NOAA Technical Memorandum NMFS-OHC-4, Silver Spring, MD, pp 321–378

    Google Scholar 

  • Bonini C, Kinnel RB, Li M et al (1983) Minor and trace sterols in marine invertebrates 38: Isolation, structure elucidation and partial synthesis of papakusterol, a new biosynthetically unusual marine sterol with a cyclopropyl-containing side chain. Tetrahedron Lett 24(3):227–280

    Article  Google Scholar 

  • Boulay JN, Cortés J, Hellberg M, Baums IB (2014) Unrecognized coral species diversity masks differences in functional ecology. Proc Roy Acad Sci Ser B 281:20131580

    Google Scholar 

  • Bourque JR, Demopoulos AWJ (2018) The influence of different deep-sea coral habitats on sediment macrofaunal community structure and function. PeerJ Aquat Biol 6:e5276

    Google Scholar 

  • Bracco A, Liu G, Galaska MP et al (2019) Integrating physical circulation models and genetic approaches to investigate population connectivity in deep-sea corals. J Mar Syst 198:103189

    Article  Google Scholar 

  • Branch TA (2001) A review of orange roughy Hoplostethus atlanticus fisheries, estimation methods, biology and stock structure. S Afr J Mar Sci 23(1):181–203

    Article  Google Scholar 

  • Brooke S et al. (2019) HydroSMAC Daily Log. https://marinelab.fsu.edu/archive/hydrosmac/daily-blog/

  • Brooke S, Jarnegren J (2013) Reproductive periodicity of the deep-water scleractinian coral, Lophelia pertusa from the Trondheim Fjord, Norway. Mar Biol 160:139–153

    Article  Google Scholar 

  • Brooke S, Schroeder WW (2007) Chapter 7: State of deep coral ecosystems in the Gulf of Mexico region: Texas to the Florida Straits. In: Lumsden SE, Hourigan TF, Bruckner AW (eds) The state of deep coral ecosystems of the United States. NOAA Technical Memorandum NOS-CRCP-3, Silver Spring, MD, pp 271–306

    Google Scholar 

  • Brooke S, Sogluizzo A (2017) Chapter 11: Invertebrate reproductive biology. In: CSA Ocean Sciences (ed) Exploration and research of mid-Atlantic deepwater hard bottom habitats and shipwrecks with emphasis on canyons and coral communities. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Atlantic OCS Region. OCS Study BOEM 2017-060, pp 537–577

    Google Scholar 

  • Brooke S, Stone R (2007) Reproduction of deep-water hydrocorals (Family Stylasteridae) from the Aleutian Islands, Alaska. Bull Mar Sci 81(3):519–532

    Google Scholar 

  • Brooke S, Young CM (2003) Reproductive ecology of a deep-water scleractinian coral, Oculina varicosa, from the southeast Florida shelf. Cont Shelf Res 23:847–858

    Article  Google Scholar 

  • Brooke S, Young CM (2005) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146(4):665–675

    Article  Google Scholar 

  • Brooke SD, Young CM (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Prog Ser 397:153–161

    Article  Google Scholar 

  • Brooke SD, Holmes M, Young CM (2009) Sediment tolerance of two different morphotypes of the deep-sea coral Lophelia pertusa from the Gulf of Mexico. Mar Ecol Prog Ser 390:137–144

    Article  Google Scholar 

  • Brooke S, Ross SW, Bane JM et al (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep Sea Res Pt II 92:240–248

    Article  Google Scholar 

  • Brooke SD, Watts MW, Heil AD et al (2017) Distributions and habitat associations of deep water corals in Norfolk and Baltimore canyons of the mid-Atlantic Bight, USA. Deep Sea Res pt II 137:131–147

    Article  Google Scholar 

  • Brooke S, Ingels J, Baco-Taylor A et al (2020) Cruise Report for NA180AR0110285: Combining habitat suitability and physical oceanography for targeted discovery of new benthic communities on the west Florida slope. Submitted to NOAA Office of Exploration and Research, p 18

    Google Scholar 

  • Brooks GR, Holmes CW (2011) West Florida continental slope. In: Buster NA and Holmes CW (eds) Gulf of Mexico, origin, waters, and biota. Texas A&M Press, College Station, TX (Geology), pp 129–139

    Google Scholar 

  • Brooks JM, Fisher C, Roberts H et al (2015) Exploration and research of northern Gulf of Mexico deepwater natural and artificial hard-bottom habitats with emphasis on coral communities: Reefs, rigs, and wrecks—“Lophelia II” Final report. U.S. Dept. Int., Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study BOEM 2016-021. 628 p

    Google Scholar 

  • Brugler MR (2011) Molecular evolution in black corals (Cnidaria:Anthozoa:Hexacorallia). Implications for Antipatharian systematics. University of Lousiana at Lafayette, Lafayette, LA

    Google Scholar 

  • Brȕning M, Sahling H, MacDonald IR et al (2010) Origin, distribution, and alteration of asphalts at Chapopote Knoll, Southern Gulf of Mexico. Mar Petrol Geol 27:1093–1106

    Article  Google Scholar 

  • Bruno JF, Selig ER, Casey KS et al (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5:e124

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryant WR, Antoine JW, Ewing M, Jones B (1968) Structure of the Mexican continental shelf and slope, Gulf of Mexico. Am Assoc Petrol Geol Bull 52:1204–1228

    Google Scholar 

  • Bryant WR, Cordova C, Cordova JL, Salvador A (1991) Physiography and bathymetry. In: Salvador A (ed) The Gulf of Mexico Basin. Geol Soc of America J, Boulder, CO, pp 13–30

    Google Scholar 

  • Buffler RT (1991) Early evolution of the Gulf of Mexico. In: Goldthwaite D (ed) An introduction to central Gulf Coast geology. New Orleans Geological Society, New Orleans, LA, pp 1–15

    Google Scholar 

  • Buffler RT, Shaub J, Watkins JS, Worzel JL (1979) Anatomy of the Mexican Ridges, southwestern Gulf of Mexico. In: Watkins JS (ed) Geological and geophysical investigations of continental margins, vol 29. American Assoc Petrol Geol Mem, Tulsa, OK, pp 319–327

    Google Scholar 

  • Burgess S, Babcock RC (2005) Reproductive ecology of three reef-forming, deep-sea corals in the New Zealand region. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, New York, pp 701–713

    Chapter  Google Scholar 

  • Cairns SD, Bayer FM (2009) Chapter 13: Octocorallia (Cnidaria) of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of Mexico, origins, waters and biota: Volume 1, Biodiversity. Texas A and M University Press, College Station, TX, pp 321–331

    Google Scholar 

  • Cairns SD, Jaap WC, Lang JC (2009) Ch14: Scleractinia (Cnidaria) of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of Mexico origin, waters, and biota. Volume 1: Biodiversity. Harte Research Institute for Gulf of Mexico Studies Series. Texas A&M University Press, College Station, TX, pp 333–347

    Google Scholar 

  • Camilli R et al (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204

    Article  CAS  PubMed  Google Scholar 

  • Chanton J, Zhao T, Rosenheim BE et al (2014) Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. Environ Sci Technol 49:847–854. https://doi.org/10.1021/es5046524

    Article  CAS  Google Scholar 

  • Chimetto LA, Brocchi M, Thompson CC et al (2008) Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst Appl Microbiol 31:312–319

    Article  CAS  PubMed  Google Scholar 

  • Church R, Cullimore WD, Johnston R et al (2007) Archaeological and biological analysis of World War II shipwrecks in the Gulf of Mexico: artificial reef effect in deep water. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2007-015

    Google Scholar 

  • Clark MR, Koslow JA (2007) Impacts of fisheries on seamounts. In: Pitcher TJ, Morato T, Hart PJB, Clark MR, Haggan N, Santos R (eds) Seamounts: ecology, fisheries & conservation. Blackwell, Oxford, pp 413–441

    Chapter  Google Scholar 

  • Coleman JM, Roberts HH, Bryant WR (1991) Late quaternary sedimentation. In: Salvador A (ed) The Gulf of Mexico Basin. The Geology of North America. Geol Soc America J, pp 325–352

    Google Scholar 

  • Coma R, Gili JM, Zabala M, Riera T (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar Ecol Prog Ser 155:257–270

    Article  Google Scholar 

  • Continental Shelf Associates, Inc. (CSA) (2006) Effects of oil and gas exploration and development at selected continental slope sites in the Gulf of Mexico, Vol. II. Technical report, U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA

    Google Scholar 

  • Cordes EE, Bergquist DC, Predmore BL et al (2006) Alternate unstable states: convergent paths of succession in hydrocarbon-seep tubeworm-associated communities. J Exp Mar Biol Ecol 339:159–176

    Article  CAS  Google Scholar 

  • Cordes EE, McGinley M, Podowski EL et al (2008) Coral communities of the deep Gulf of Mexico. Deep Sea Res Pt I 55(6):777–787

    Article  Google Scholar 

  • Cordes EE, Berlet SP, Cardman Z et al (2014) Exploring deep-sea coral communities and the effects of oil and gas inputs to the Gulf of Mexico. Oceanography 27:28–29. https://doi.org/10.5670/oceanog.2014.supplement.01

    Article  Google Scholar 

  • Cordes EE, Jones DOB, Schlacher TA et al (2016a) Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Front Environ Sci 4:58. https://doi.org/10.3389/fenvs.2016.00058

    Article  Google Scholar 

  • Cordes EE, Arnaud-Haond S, Bergstad O-A et al (2016b) Chapter 42: Cold-water corals. In: Inniss L, Simcock A (eds) The first global integrated marine assessment: world ocean assessment I, under the auspices of the United Nations General Assembly

    Google Scholar 

  • Cordona Y, Ruiz-Ramos DV, Baums IB, Bracco A (2016) Potential connectivity of cold-water black coral communities in the Northern Gulf of Mexico. PLoS One 11(5):e0156257. https://doi.org/10.1371/journal.pone.0156257

    Article  CAS  Google Scholar 

  • Corso W, Austin JA Jr, Buffler RT (1988) The early Cretaceous platform off northwest Florida: Controls on morphological development of carbonate margins. Mar Geol 86:1–14

    Article  Google Scholar 

  • Costa-Lotufo LV, Carnevale-Neto F, Trindade-Silva AE et al (2018) Chemical profiling of two congeneric sea mat corals along the Brazilian coast: Adaptive and functional patterns. Chem Commun 54(16):1952–1955

    Article  CAS  Google Scholar 

  • Cowen RK, Gawarkiewicz G, Pineda J et al (2007) Population connectivity in marine systems: An overview. Oceanography 20(3):14–21

    Article  Google Scholar 

  • Coykendall DK, Cornman RS, Prouty NG et al (2019) Molecular characterization of Bathymodiolus mussels and gill symbionts associated with chemosynthetic habitats from the U.S. Atlantic margin. PLoS One 14(3):e0211616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosson S, Yandle T, Stoffle B (2013) Renegotiating property rights in the Florida golden crab fishery. Int J Commons 7(2):521–548

    Article  Google Scholar 

  • CSA International Inc. (2007) Characterization of northern Gulf of Mexico deepwater hard bottom communities with emphasis on Lophelia coral. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2007-044

    Google Scholar 

  • Davies A, Guinotte J (2011) Global habitat suitability for framework-forming cold-water corals. PLoS One 6(4):e18483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies AJ, Wisshak M, Orr JC, Roberts JM (2008) Predicting suitable habitat for the cold-water reef framework-forming coral Lophelia pertusa (Scleractinia). Deep Sea Res Pt I 55:1048–1062

    Article  Google Scholar 

  • Davies AJ, Duineveld GCA, Lavaleye MSS et al (2009) Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol Oceanogr 54:620–629

    Article  Google Scholar 

  • Davies AJ, Duineveld GCA, van Weering TCE et al (2010) Short-term environmental variability in cold-water coral habitat at Viosca Knoll, Gulf of Mexico. Deep Sea Res Pt I 57:199–212

    Article  CAS  Google Scholar 

  • DeLeo DM, Ruiz-Ramos DV, Baums IB et al (2016) Response of deep-water corals to oil and chemical dispersant exposure. Deep Sea Res Pt II 129:137–147

    Article  CAS  Google Scholar 

  • DeLeo DM, Herrera S, Lengyel SD et al (2018) Gene expression profiling reveals deep-sea coral response to the Deepwater Horizon oil spill. Mol Ecol 27:4066–4077

    Article  CAS  PubMed  Google Scholar 

  • Demopoulos AWJ, Bourque JR, Frometa J (2014) Biodiversity and community composition of sediment macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico. Deep Sea Res Pt I 93:91–103. https://doi.org/10.1016/j.dsr.2014.07.014

    Article  Google Scholar 

  • Demopoulos AWJ, Bourque JR, Cordes E, Stamler KM (2016) Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities. Mar Ecol Prog Ser 561:51–68. https://doi.org/10.3354/meps11905

    Article  CAS  Google Scholar 

  • Demopoulos AWJ, Ross SW, Kellogg CA et al (2017) Deepwater program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico. U.S. Geological Survey Open-File Report 2017-1139, p 269

    Google Scholar 

  • Dobretsov S, Qian PY (2004) The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp. in the inhibition of larval settlement. J Exp Mar Biol Ecol 299(1):35–50

    Article  Google Scholar 

  • D’Onghia G, Maiorano P, Sion L et al (2010) Effects of deep-water coral banks on the abundance and size structure of the megafauna in the Mediterranean Sea. Deep Sea Res Pt II 57(5–6):397–411

    Article  Google Scholar 

  • Doughty CD, Quattrini AM, Cordes EE (2014) Insights into the population dynamics of the deep-sea coral genus Paramuricea in the Gulf of Mexico. Deep Sea Res II 99:71–82

    Article  Google Scholar 

  • Dunn SC (2016) Miocene contourite deposition (along-slope) near DeSoto Canyon, Gulf of Mexico: A product of an enhanced paleo-Loop Current: PhD Dissertation, College of Marine Science, University of South Florida, 139 p

    Google Scholar 

  • Eckle P, Burgherr P, Michaux E (2012) Risk of large oil spills: a statistical analysis in the aftermath of Deepwater Horizon. Environ Sci Techonol 46:13002–13008. https://doi.org/10.1016/j.marpol.2013.12.002

    Article  CAS  Google Scholar 

  • ECOGIG (2013) https://ecogig.org/expeditions?id=36

  • ECOGIG (2017) https://ecogig.org/expeditions?id=36

  • Edinger EN, Wareham VE, Haedrich RL (2007) Patterns of groundfish diversity and abundance in relation to deep-sea coral distributions in Newfoundland and Labrador waters. Bull Mar Sci 81:101–122

    Google Scholar 

  • Emiliani C, Hudson JH, Shinn EA et al (1978) Oxygen and carbon isotopic growth records in a reef coral from the Florida Keys and a deep-sea coral from the Blake Plateau. Science 202:627–629

    Article  CAS  PubMed  Google Scholar 

  • Etnoyer PJ, Cairns SD (2017) Deep-sea coral taxa in the U.S. Gulf of Mexico: depth and geographical distribution. In: Hourigan TF, Etnoyer PJ, Cairns SD (eds) The state of deep-sea coral and sponge ecosystems of the United States. NOAA Tech Memo NMFS-OHC-4

    Google Scholar 

  • Etnoyer P, Warrenchuk J (2007) A catshark nursery in a deep gorgonian field in the Mississippi Canyon, Gulf of Mexico. Bull Mar Sci 81(3):553–559

    Google Scholar 

  • Etnoyer PJ, Wickes LN, Silva M et al (2016) Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the Deepwater Horizon oil spill. Coral Reefs 35:77–90

    Article  Google Scholar 

  • Etnoyer PJ, Wagner D, Fowle HA et al (2018) Models of habitat suitability, size, and age-class structure for the deep-sea black coral Leiopathes glaberrima in the Gulf of Mexico. Deep Sea Res Pt II 150:218–228

    Article  Google Scholar 

  • Ewing M, Erickson DB, Heezen BC (1958) Sediments and topography of the Gulf of Mexico. In: Weeks LG (ed) Habitat of oil. American Assoc Petrol Geol, Tulsa, OK, pp 995–1053

    Google Scholar 

  • Eytan RI, Hayes M, Arbour-Reily P et al (2009) Nuclear sequences reveal mid-range isolation of an imperiled deep-water coral population. Mol Ecol 18:2375–2389

    Article  CAS  PubMed  Google Scholar 

  • Fisher CR, Hsing P-Y, Kaiser CL et al (2014a) Footprint of Deepwater Horizon blowout impact to deep-water coral communities. Proc Natl Acad Sci USA 111:11744–11749. https://doi.org/10.1073/pnas.1403492111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher CR, Demopoulos AWJ, Cordes EE et al (2014b) Deep-sea coral communities as indicators of ecosystem level impacts resulting from the Deepwater Horizon oil spill. BioScience 64(9):796–807. https://doi.org/10.1093/biosci/biu129

    Article  Google Scholar 

  • Frank N, Freiwald A, Lopez-Correa M et al (2011) Northeastern Atlantic cold-water coral reefs and climate. Geology 39:743–746

    Article  Google Scholar 

  • Freeman-Lynde RR (1983) Cretaceous and Tertiary samples dredged from the Florida Escarpment, eastern Gulf of Mexico. Gulf Coast Assoc Geol Soc Trans 33:91–99

    Google Scholar 

  • Frometa J, DeLorenzo ME, Pisarski EC, Etnoyer PJ (2017) Toxicity of oil and dispersant on the deep water gorgonian octocoral Swiftia exserta, with implications for the effects of the Deepwater Horizon oil spill. Mar Poll Bull 122(1–2):91–99

    Article  CAS  Google Scholar 

  • Galand PE, Remize M, Meistertzheim AL et al (2020) Diet shapes cold-water corals bacterial communities. Environ Microbiol 22(1):354–368

    Article  CAS  PubMed  Google Scholar 

  • Galkiewicz JP, Pratte ZA, Gray MA, Kellogg CA (2011) Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa. FEMS Microb Ecol 77(2):333–346

    Article  CAS  Google Scholar 

  • Galkiewicz JP, Stellick SH, Gray MA, Kellogg CA (2012) Cultured fungal associates from the deep-sea coral Lophelia pertusa. Deep Sea Res I 67:12–20

    Article  Google Scholar 

  • Galloway WE, Whitaker TL, Ganey-Curry PR (2011) History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere 7:938–973. https://doi.org/10.1130/GES00647.1

    Article  Google Scholar 

  • Garrison LE, Martin RG Jr (1973) Geologic structure in the Gulf of Mexico. U.S. Geological Survey Professional Paper 773, 85 pp

    Google Scholar 

  • Gass SE, Roberts JM (2006) The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Mar Poll Bull 52:549–559

    Article  CAS  Google Scholar 

  • GEBCO Compilation Group (2020) GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9

  • Georgian SE, Shedd W, Cordes EE (2014) High-resolution ecological niche modelling of the cold-water coral Lophelia pertusa in the Gulf of Mexico. Mar Ecol Prog Ser 506:145–161

    Article  Google Scholar 

  • Georgian S, DeLeo D, Durkin A et al (2016a) Oceanographic patterns and carbonate chemistry in the vicinity of cold-water coral reefs in the Gulf of Mexico: implications for resilience in a changing ocean. Limnol Oceangr 61:648–665

    Article  Google Scholar 

  • Georgian SE, Dupont S, Kurman M et al (2016b) Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar Ecol 37:1345–1359

    Article  Google Scholar 

  • Georgian SE, Kramer K, Saunders M et al (2019) Habitat suitability modelling to predict the spatial distribution of cold-water coral communities affected by the Deepwater Horizon oil spill. J Biogeogr 47:1455–1466

    Article  Google Scholar 

  • Girard F, Fu B, Fisher CR (2016) Mutualistic symbiosis with ophiuroids limited the impact of the Deepwater Horizon oil spill on deep-sea octocorals. Mar Ecol Prog Ser 549:89–98

    Article  Google Scholar 

  • Girard F, Katriona S, Fisher C (2018) Projecting the recovery of a long-lived deep-sea octocoral species after the Deepwater Horizon oil spill using structured population models. J Appl Ecol 55:1812–1822

    Article  Google Scholar 

  • GMFMC (2011) Generic annual catch limits/accountability measures amendment for the Gulf of Mexico Fishery Management Council’s red drum, reef fish, shrimp, coral and coral reefs fishery management plans. Gulf of Mexico Fishery Management Council, Tampa, FL. 378 pp. http://gulfcouncil.org/wp-content/uploads/Final-Generic-ACL-AM-Amendment-September-9-2011-v.pdf

  • Goldsmith DB, Kellogg CA, Morrison CL et al (2018) Comparison of microbiomes of cold-water corals Primnoa pacifica and Primnoa resedaformis, with possible link between microbiome composition and host genotype. Sci Rep 8:12383

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong L, Chen W, Gao Y et al (2013) Genetic analysis of the metabolome exemplified using a rice population. Proc Natl Acad Sci USA 110(50):20320–20325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinotte JM, Orr J, Cairns S et al (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146

    Article  Google Scholar 

  • Halanych KM, Ainsworth CH, Cordes EE et al (2021) Effects of petroleum by-products and dispersants on ecosystems. Oceanography 34:152–163. https://doi.org/10.5670/oceanog.2021.123

    Article  Google Scholar 

  • Hamilton P, Fargion GS, Biggs DC (1999) Loop current eddy paths in the western Gulf of Mexico. J Phys Oceanogr 29:1180–1207

    Article  Google Scholar 

  • Hansson L, Agis M, Maier C et al (2009) Community composition of bacteria associated with cold-water coral Madrepora oculata: within and between colony variability. Mar Ecol Prog Ser 397:89–102

    Article  CAS  Google Scholar 

  • Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: An ecosystem in transition. Springer, Dordrecht, pp 59–85

    Chapter  Google Scholar 

  • Harter SL, Ribera MM, Shepard AN, Reed JK (2009) Assessment of fish populations and habitat on Oculina Bank, a deep-sea coral marine protected area off eastern Florida. Fish Bull 107(2):195–206

    Google Scholar 

  • Hebbeln D (2012) West Atlantic cold-water coral ecosystems: the west side story. RV Maria S. Merian, Cruise Report MSM20/L4, 2012, 57 pp., DFG Senatskommission für Ozeanographie

    Google Scholar 

  • Hebbeln D, Wienberg C, Wintersteller P et al (2014) Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences (BG) 11:1799–1815

    Article  Google Scholar 

  • Hebbeln D, Portilho-Ramos RC, Wienberg C, Titschack J (2019) The fate of cold-water corals in a changing world: a geological perspective. Front Mar Sci 6:119. https://doi.org/10.3389/fmars.2019.00119

    Article  Google Scholar 

  • Hemmer MJ, Barron MG, Greene RM (2011) Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environ Toxicol Chem 30(10):2244–2252

    Article  CAS  PubMed  Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA et al (2015) Hidden impacts of ocean acidification to live and dead coral framework. Proc R Soc B 282:20150990. https://doi.org/10.1098/rspb.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennige SJ, Wolfram U, Wickes L et al (2020) Crumbling reefs and cold-water coral habitat loss in a future ocean: evidence of “coralporosis” as an indicator of habitat integrity. Front Mar Sci 7:668. https://doi.org/10.3389/fmars.2020.00668

    Article  Google Scholar 

  • Hernandez-Agreda A, Leggat W, Bongaerts P et al (2016) The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. Am Soc Microbiol 7:1–10

    Google Scholar 

  • Hernandez-Agreda A, Gates RD, Ainsworth TC (2017) Defining the core microbiome in corals’ soup. Trends Microbiol 25:125–140

    Article  CAS  PubMed  Google Scholar 

  • Hey J, Machado CA (2003) The study of structured populations: New hope for a difficult and divided science. Nat Rev Genet 4(7):535–543

    Article  CAS  PubMed  Google Scholar 

  • Hine AC (2019) Geologic history of Florida. University Press of Florida, Gainesville, FL. 230 p. ISBN: 978-0-8130-6412-3

    Google Scholar 

  • Hofmann EE, Worley SJ (1986) An investigation of the circulation of the Gulf of Mexico. J Geophys Res 91:14221–14236

    Article  Google Scholar 

  • Hourigan TF, Etnoyer PJ, Cairns SD (2017) The state of deep-sea coral and sponge ecosystems of the United States. NOAA Tech Memo NMFS-OHC-4, 467p

    Google Scholar 

  • Hsing P-Y, Fu B, Larcom EA et al (2013) Evidence of lasting impact of the Deepwater Horizon oil spill on a deep Gulf of Mexico coral community. Elementa Sci Anthropocene 1:52

    Article  Google Scholar 

  • Hsu CW, MacDonald IR, Rȍmer M et al (2019) Characteristics and hydrocarbon seepage at the Challenger Knoll in the Sigsbee Basin, Gulf of Mexico. Geo Mar Lett 39:391–399

    Article  CAS  Google Scholar 

  • Hu Z, Hu J, Hu H, Zhou Y (2020) Predictive habitat suitability modeling of deep-sea framework-forming scleractinian corals in the Gulf of Mexico. Sci Tot Environ 742:140562

    Article  CAS  Google Scholar 

  • Hubscher C, Dullo C, Flogel S et al (2010) Contourite drift evolution and related coral growth in the eastern Gulf of Mexico and it’s gateways. Int J Earth Sci 99(1):S191–S206

    Article  Google Scholar 

  • Husebo A, Nottestad L, Fossa JH et al (2002) Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia 471:91–99

    Article  Google Scholar 

  • Jarnegren J, Brooke S, Jensen H (2017) Effects of drill cuttings on larvae of the cold-water coral Lophelia pertusa. Deep Sea Res Pt II 137:454–462

    Article  Google Scholar 

  • Jarnegren J, Brooke S, Jensen H (2020) Effects and recovery of the cold-water coral Lophelia pertusa (Desmophyllum pertusum) exposed to suspended bentonite, barite and drill cuttings. Mar Environ Res 158:104996

    Article  CAS  PubMed  Google Scholar 

  • Jochens AE, DiMarco SF (2008) Physical oceanographic conditions in the deep-water Gulf of Mexico in summer 2000-2002. Deep Sea Res Pt II 55:2541–2554

    Article  CAS  Google Scholar 

  • Joye SB, Bracco A, Ozgokmen T et al (2016) The Gulf of Mexico ecosystem, six years after the macondo oil well blowout. Deep Sea Res II 129:4–19. https://doi.org/10.1016/j.dsr2.2016.04.018

    Article  Google Scholar 

  • Kahng SE, Benayahu Y, Lasker HR (2011) Sexual reproduction in octocorals. Mar Ecol Prog Ser 443:265–283

    Article  Google Scholar 

  • Kellogg CA (2019) Microbiomes of stony and soft deep-sea corals share rare core bacteria. Microbiome 7(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellogg CA, Lisle JT, Galkiewicz JP (2009) Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico. Appl Env Microbiol 75(8):2294–2303

    Article  CAS  Google Scholar 

  • Kellogg CA, Ross SW, Brooke SD (2016) Bacterial community diversity of the deep sea octocoral Paramuricea placomus. PeerJ 4:e2529

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellogg CA, Galkiewicz JP, Gray MA (2017a) Microbial ecology and functional metagenomics of Lophelia pertusa in the Gulf of Mexico. In: Demopoulos AWJ et al (eds) Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico. SGS Open File Report 2017-1139

    Google Scholar 

  • Kellogg CA, Goldsmith DB, Gray MA (2017b) Biogeographic comparison of Lophelia associated bacterial communities in the western Atlantic reveals conserved core microbiome. Front Microbiol 8:796

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilgour MJ, Shirley TC (2008) Eumunida picta S.I. Smith, 1883, and Lophelia pertusa (Linnaeus, 1758): a relationship or just good friends? Crustaceana 81:587–593

    Article  Google Scholar 

  • Kujawinski EB, Kido Soule MC, Valentine DL et al (2011) Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol 45(4):1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Kurman MD, Gomez CE, Georgian SE et al (2017) Intra-specific variation reveals potential for adaptation in a cold-water coral from the Gulf of Mexico. Front Mar Sci 4:111

    Article  Google Scholar 

  • Larcom EA, McKean DL, Brooks JM et al (2014) Growth rates, densities, and distribution of Lophelia pertusa on artificial structures in the Gulf of Mexico. Deep Sea Res Pt I 85:101–109

    Article  Google Scholar 

  • Larsson AI, van Oevelen D, Purser A, Thomsen L (2013) Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Mar Poll Bull 70(1–2):176–188

    Article  CAS  Google Scholar 

  • Larsson AI, Järnegren J, Strömberg SM et al (2014) Embryogenesis and larval biology of the cold water coral Lophelia pertusa. PLoS One 9(7):e102222

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavaleye MSS, Duineveld GCA (2001) Coral recruitment experiments. ACES Deliverable, p 205

    Google Scholar 

  • Lawler SN, Kellogg CA, France SC et al (2016) Coral associated bacterial diversity is conserved across two deep-sea Anthothela species. Front Microbiol 7:458

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepland A, Mortensen PB (2008) Barite and barium in sediments and coral skeletons around the hydrocarbon exploration drilling site in the Traena Deep, Norwegian Sea. Environ Geol 56:119–129. https://doi.org/10.1007/s00254-007-1145-4

    Article  CAS  Google Scholar 

  • Le Quéré C, Takahashi T, Buitenhuis ET et al (2010) Impact of climate change and variability on the global oceanic sink of CO2. Glob Biogeochem Cycles 24(4):GB4007

    Article  Google Scholar 

  • Lessard-Pilon SA, Podowski EL, Cordes EE, Fischer CR (2010) Megafauna community composition associated with Lophelia pertusa colonies in the Gulf of Mexico. Deep Sea Res Pt II 57(21–23):1882–1890

    Article  Google Scholar 

  • Locker S, Buffler RT (1983) Comparison of lower Cretaceous carbonate shelf margins, northern Campeche Escarpment and northern Florida Escarpment, Gulf of Mexico. Am Assoc Petrol Geol Stud Geol 15:123–128

    Google Scholar 

  • López Correa M, Montagna P et al (2012) Preboreal onset of cold-water coral growth beyond the Arctic Circle revealed by coupled radiocarbon and U-series dating and neodymium isotopes. Quat Sci Rev 34:24–43

    Article  Google Scholar 

  • Lumsden SE, Hourigan TF, Bruckner AW (eds) (2007) The state of deep coral ecosystems of the United States. NOAA Technical Memorandum NOS-CRCP-3, Silver Spring, MD

    Google Scholar 

  • Lunden JJ (2013) Ocean acidification and the cold-water coral Lophelia pertusa in the Gulf of Mexico. PhD Thesis, Temple University, 134 p

    Google Scholar 

  • Lunden JJ, Georgian SE, Cordes EE (2013) Aragonite saturation states at cold-water coral reefs structured by Lophelia pertusa in the northern Gulf of Mexico. Limnol Oceanogr 58:354–362

    Article  Google Scholar 

  • Lunden JJ, McNicholl CM, Sears C et al (2014) Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front Mar Sci 1:78

    Article  Google Scholar 

  • Macpherson E, Beuck L, Freiwald A (2016) Some species of Munidopsis from the Gulf of Mexico, Florida Straits and Caribbean Sea (Decapoda: Munidopsidae), with the description of two new species. Zootaxa 4137:405–416

    Article  PubMed  Google Scholar 

  • Maier SR, Kutti T, Bannister RJ et al (2020) Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Sci Rep 10:9942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marton G, Buffler RT (2010) Jurassic reconstruction of the Gulf of Mexico Basin. Int Geol Rev 36(6):545–586. https://doi.org/10.1080/00206819409465475

    Article  Google Scholar 

  • Matos L, Wienberg C, Titschack J et al (2017) Coral mound development at the Campeche cold-water coral province, southern Gulf of Mexico: Implications of Antarctic Intermediate Water increased influence during interglacials. Mar Geol 392:53–65

    Article  CAS  Google Scholar 

  • McBride BC, Weimer P, Rosen MG (1998) The effect of allochthonous salt on the petroleum systems of northern Green Canyon and Ewing Bank (offshore Louisiana), Northern Gulf of Mexico. Am Assoc Petrol Geol Bull 82:1083–1112

    Google Scholar 

  • McNutt MK, Camilli R, Crone TJ et al (2012) Review of flow rate estimates of the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109(50):20260–20267

    Article  PubMed  Google Scholar 

  • Meistertzheim A-L, Lartaud F, Arnaud-Haond S et al (2016) Patterns of bacteria-host associations suggest different ecological strategies between two reef building cold-water coral species. Deep Sea Res Pt I 114:12–22

    Article  Google Scholar 

  • Menezes CBA, Bonugli-Santos RC, Miqueletto PB et al (2009) Microbial diversity associated with algae, ascidians and sponges from the north coast of Sao Paulo state, Brazil. Microbiol Res 165:466–482

    Article  PubMed  Google Scholar 

  • Mercier A, Hamel J-F (2009) Reproductive periodicity and hostspecific settlement and growth of a deep-water symbiotic sea anemone. Can J Zool 87:967–980

    Article  CAS  Google Scholar 

  • Mercier A, Sun Z, Hamel J-F (2011) Reproductive periodicity, spawning and development of the deep-sea scleractinian coral Flabellum angulare. Mar Biol 158:371–380

    Article  Google Scholar 

  • Merino M (1997) Upwelling on the Yucatan Shelf: hydrographic evidence. J Mar Syst 13:101–121

    Article  Google Scholar 

  • Mienis F, Duineveld GCA, Davies AJ et al (2012) The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico. Deep Sea Res Pt I 60:32–45

    Article  Google Scholar 

  • Mienis F, Bouma TJ, Witbaard R et al (2019) Experimental assessment of the effects of coldwater coral patches on water flow. Mar Ecol Prog Ser 609:101–117

    Article  CAS  Google Scholar 

  • Mikkelsen N, Erlenkeuser H, Killingley JS et al (1982) Norwegian corals; radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11:163–171

    Article  Google Scholar 

  • Miller RJ, Hocevar J, Stone RP, Fedorov DV (2012) Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons. PLoS One 7:e33885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91(1):1–21. https://doi.org/10.1086/628741

    Article  Google Scholar 

  • Molinari RL, Morrison J (1988) The separation of the Yucatan Current from the Campeche Bank and intrusion of the Loop Current into the Gulf of Mexico. J Geophys Res 93:10645–10654

    Article  Google Scholar 

  • Morrison JM, Merrell WJ Jr, Key RM et al (1983) Property distributions and deep chemical measurements within the Western Gulf of Mexico. J Geophys Res 88:2601–2608

    Article  CAS  Google Scholar 

  • Morrison CL, Eackles MS, Johnson RL, King TL (2008) Characterization of 13 microsatellite loci for the deep-sea coral, Lophelia pertusa (Linnaeus 1758), from the western North Atlantic Ocean and Gulf of Mexico. Mol Ecol Res 8:1037–1039

    Article  CAS  Google Scholar 

  • Morrison CL, Ross SW, Nizinski MS et al (2011) Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean. Conserv Genet 12:713–729

    Article  Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:83–104

    Article  Google Scholar 

  • Mortensen PB, Rapp HT (1998) Oxygen and carbon isotope ratios related to growth linepatterns in skeletons of Lophelia pertusa (L) (Anthozoa, Scleractinia): implications for determinations of linear extension rates. Sarsia 83:433–446

    Article  Google Scholar 

  • Mullins HT, Gardulski AF, Hine AC (1986) Catastrophic collapse of the West Florida Platform margin. Geology 14:167–170

    Article  Google Scholar 

  • Murawski SA, Hollander DJ, Gilbert S, Gracia A (2020) Deepwater oil and gas production in the Gulf of Mexico and related global trends. In: Murawski S et al. Scenarios and responses to future deep oil spills. Springer, Cham. https://doi.org/10.1007/978-3-030-12963-7_2

  • Neave M, Mitchell C, Apprill A et al (2017) Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep 7:40579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neulinger SC, Järnegren J, Ludvigsen M et al (2008) Phenotype-specific bacterial communities in the cold-water coral Lophelia pertusa (Scleractinia) and their implications for the coral’s nutrition, health, and distribution. Appl Environ Microbiol 74(23):7272–7285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton CR, Mullins HT, Gardulski AF, Hine AC, Dix GR (1987) Coral mounds on the West Florida slope: unanswered questions regarding the development of deep-water banks. Palaios 2:359–367

    Article  CAS  Google Scholar 

  • Nielsen JG, Ross SW, Cohen DM (2009) Atlantic occurrence of the genus Bellottia (Teleostei, Bythitidae) with two new species from the Western North Atlantic. Zootaxa 2018(1):45–57

    Article  Google Scholar 

  • Nizinski M, Ames C (2017) Distribution, abundance, and species composition of the megafaunal invertebrate assemblages associated with deep-sea coral habitats in the Gulf of Mexico. In: Demopoulos AWJ, Ross SW, Kellogg CA et al (eds) Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico. U.S. Geological Survey Open-File Report 2017-1139, p 269

    Google Scholar 

  • Orejas C, Gori A, Rad-Menéndez C et al (2016) The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J Exp Mar Biol Ecol 481:34–40

    Article  Google Scholar 

  • Paull CK, Neumann AC (1987) Continental margin brine seeps: Their geological consequences. Geology 15:545–548. https://doi.org/10.1130/0091-7613(1987)15<545:CMBSTG>2.0.co;2

    Article  Google Scholar 

  • Paull CK, Hecker B, Commeau R et al (1984) Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226:965–967. https://doi.org/10.1126/science.226.4677.965

    Article  CAS  PubMed  Google Scholar 

  • Paull CK, Spiess FN, Curray JR, Twichell D (1990) Origin of Florida Canyon and the role of spring sap** on the formation of submarine box canyons. Geol Soc Am Bull 102:502–515

    Article  Google Scholar 

  • Paull CK, Caress DW, Gwiazda R et al (2014) Cretaceous-Paleogene boundary exposed. Campeche Escarpment, Gulf of Mexico. Mar Geol 357:392–400

    Article  Google Scholar 

  • Perez-Drago G, Perez-Cruz G, Chenet P (2019) Origin of natural seabed seepage along Mexico: Petroleum system implications and potential. In: Proceedings 2nd EAGE workshop on deepwater exploration in Mexico, April 2019, pp 1–5. https://doi.org/10.3997/2214-4609.201900356

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Pew E (1982) Seismic structural analysis of deformation in the southern Mexico Ridges. MA thesis, University of Texas Libraries, The University of Texas at Austin, 102 p

    Google Scholar 

  • Prada C, Hellberg ME (2013) Long pre-reproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc Natl Acad Sci USA 110(10):3961–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prouty NG, Roark EB, Buster NA, Ross SW (2011) Growth-rate and age distribution of deep-sea black corals in the Gulf of Mexico. Mar Ecol Prog Ser 423:101–115

    Article  Google Scholar 

  • Prouty NG, Roark EB, Koenig AE et al (2014) Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin. Global Biogeochem Cycles 28:29–43. https://doi.org/10.1002/2013GB004754

    Article  CAS  Google Scholar 

  • Prouty N, Fisher CR, Demopoulos AWJ, Druffel ERM (2016) Growth rates and ages of deep-sea corals impacted by the Deepwater Horizon oil spill. Deep Sea Res Pt II 129:196–212

    Article  CAS  Google Scholar 

  • Prouty NG, Roark EB, Andrews AH et al (2017) Age, growth rates, and paleoclimate studies in deep-sea corals of the U.S. In: Hourigan TF, Etnoyer PJ, Cairns SD (eds) State of deep-sea coral and sponge ecosystems of the United States. NOAA Technical Memorandum NMFS-OHC-4, Silver Spring, MD

    Google Scholar 

  • Purser A, Thomsen L (2012) Monitoring strategies for drill cutting discharge in the vicinity of cold-water coral ecosystems. Mar Pollut Bull 64:2309–2316. https://doi.org/10.1016/j.marpolbul.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  • Quattrini AM, Ross SW, Sulak KJ et al (2004) Marine fishes new to continental United States waters, North Carolina, and the Gulf of Mexico. Southeastern Nat 3(1):155–172

    Article  Google Scholar 

  • Quattrini AM, Georgian SE, Byrnes L et al (2013) Niche divergence by deep-sea octocorals in the genus Callogorgia across the continental slope of the Gulf of Mexico. Mol Ecol 22:4123–4140. https://doi.org/10.1111/mec.12370

    Article  PubMed  Google Scholar 

  • Quattrini AM, Etnoyer PJ, Doughty C et al (2014) A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico. Deep Sea Res Pt II 99:92–102

    Article  Google Scholar 

  • Quattrini AM, Baums IB, Shank TM, Morrison CL, Cordes EE (2015) Testing the depth differentiation hypothesis in a deepwater octocoral. Proc R Soc B 282:20150008

    Article  PubMed  PubMed Central  Google Scholar 

  • Quattrini AM, Gomez CE, Cordes EE (2017) Environmental filtering and neutral processes shape octocoral community assembly in the deep sea. Oecologia 183:221–236

    Article  PubMed  Google Scholar 

  • Raghukumar S (2006) Marine microbial eukaryotic diversity, with particular reference to fungi: lessons from prokaryotes. Indian J Mar Sci 35(4):388–398

    Google Scholar 

  • Raina JB, Tapiolas D, Willis BL, Bourne DG (2009) Coral associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75:3492–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakka M, Bilan M, Godinho A et al (2019) First description of polyp-bailout in cold-water octocorals under aquaria maintenance. Coral Reefs 38:15–20

    Article  Google Scholar 

  • Reed JK, Wright A (2004) Submersible and scuba collections on deepwater reefs off the east coast of Florida, including the Northern and Southern Straits of Florida and Florida Marine Keys National Sanctuary for biomedical and biodiversity research of the benthic communities with emphasis on the Porifera and Gorgonacea, May 20-June 2, 2004. Final cruise report. Conducted by the Center of Excellence, HBOI and FAU, p 54

    Google Scholar 

  • Reed JK, Weaver DC, Pomponi SA (2006) Habitat and fauna of deep-water Lophelia pertusa coral reefs off the southeastern US: Blake Plateau, Straits of Florida, and Gulf of Mexico. Bull Mar Sci 78(2):343–375

    Google Scholar 

  • Reed JK, Harter S, Farrington S, David A (2014) Characterization and interrelationships of deepwater coral/sponge habitats and fish communities off Florida. In: Interrelationships between corals and fisheries. CRC, Boca Raton, FL, pp 51–82

    Google Scholar 

  • Reed JK, Farrington S, David A et al (2019) Pulley Ridge, Gulf of Mexico, USA. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, Cham, pp 57–69

    Chapter  Google Scholar 

  • Reshef L, Koren O, Loya Y et al (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  CAS  PubMed  Google Scholar 

  • Ribes M, Coma R, Gili J (1999) Heterogenous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar Ecol Prog Ser 183:125–137

    Article  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Roberts HH, Aharon P (1994) Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope—a review of submersible investigations. Geo Mar Lett 14:135–148

    Article  CAS  Google Scholar 

  • Roberts JM, Cairns SD (2014) Cold-water corals in a changing ocean. Curr Opin Environ Sustain 7:118–126

    Article  Google Scholar 

  • Roberts HH, Kohl B (2018) Temperature control of cold-water coral (Lophelia) mound growth by climate-cycle forcing, Northeast Gulf of Mexico. Deep Sea Res Pt I 140:142–158

    Article  CAS  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, New York

    Book  Google Scholar 

  • Roberts HH, Feng D, Joye SB (2010) Cold-seep carbonates of the middle and lower continental slope. Deep Sea Res Pt II 57:2040–2054

    Article  CAS  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rooper CN, Etnoyer PJ, Stierhoff KL, Olson JV (2017) Effects of fishing gear on deep-sea corals and sponges in U.S. waters. In: Hourigan TF, Etnoyer PJ, Cairns SD (eds) The State of deep-sea coral and sponge ecosystems of the United States. NOAA Technical Memorandum NMFS-OHC-4, Silver Spring, MD. 36 p

    Google Scholar 

  • Rosenberg E, Kellogg CA, Rohwer F (2007a) Coral microbiology. Oceanography 20(2):114–122

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L et al (2007b) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  • Ross SW, Quattrini AM (2007) The fish fauna associated with deep coral banks off the southeastern United States. Deep Sea Res Pt I 54(6):975–1007

    Article  Google Scholar 

  • Ross SW, Brooke S, Quattrini AM et al (2015) A deep-sea community, including Lophelia pertusa, at unusually shallow depths in the western North Atlantic Ocean off northeastern Florida. Mar Biol 162(3):635–648

    Article  Google Scholar 

  • Ross SW, Rhode M, Brooke SD (2017a) Deep sea coral and hardbottom habitats on the west Florida slope, eastern Gulf of Mexico. Deep Sea Res Pt II 120:14–28

    Article  CAS  Google Scholar 

  • Ross SW, Quattrini AM, Rhode M (2017b) Fishes associated with deep-sea coral habitats in the Gulf of Mexico In: Demopoulos AWJ, Ross SW, Kellogg CA et al (eds) Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico. U.S. Geological Survey Open-File Report 2017-1139, p 269

    Google Scholar 

  • Rowe GT, Kennicutt II MC, (eds) (2009) Northern Gulf of Mexico continental slope habitats and benthic ecology study: Final report, U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA

    Google Scholar 

  • Rowe GT, Menzel DW (1971) Quantitative benthic samples from the deep Gulf of Mexico with some comments on the measurement of deep-sea biomass. Bull Mar Sci 21:556–566

    Google Scholar 

  • Rozenfeld AF, Arnaud-Haond S, Hernández-García E (2007) Spectrum of genetic diversity and networks of clonal organisms. J R Soc Interface 4(17):1093–1102

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Ramos DV, Saunders M, Fisher CR, Baums IB (2015) Home bodies and wanderers: sympatric lineages of the deep-sea black coral Leiopathes glaberrima. PLoS One 10(10):e0138989

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahling H, Borowski C, Escobar-Briones E et al (2016) Massive asphalt deposits, oil seepages, and gas venting support abundant chemosynthetic communities at the Campeche Knolls Southern Gulf of Mexico. Biogeosciences 13:4491–4512. https://doi.org/10.5194/bg-13-4491-2016

    Article  CAS  Google Scholar 

  • Salvador A (1991) Introduction. In: Salvador A (ed) The Gulf of Mexico Basin. The Geology of North America. Geol Soc America J, pp 1–12

    Google Scholar 

  • Sammarco PW (1982) Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Mar Ecol Prog Ser 10:57–65

    Article  Google Scholar 

  • Schmitz WJ, McCartney MS (1993) On the North Atlantic circulation. Rev Geophys 31:29–49

    Article  Google Scholar 

  • Schroeder WW (2002) Observations of Lophelia pertusa and the surficial geology at a deep-water site in the northeastern Gulf of Mexico. Hydrobiologia 471:29–33

    Article  Google Scholar 

  • Schroeder WW (2007) Seafloor characteristics and distribution patterns of Lophelia pertusa and other sessile megafauna at two upper-slope sites in the northwestern Gulf of Mexico. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2007-035

    Google Scholar 

  • Schwing P, Montagna PA, Joye SB et al (2020) Deep benthic ecosystem impacts of the Deepwater Horizon oil spill: Assembling the record of species and community change. Front Mar Sci 7:560012. https://doi.org/10.3389/fmars.2020.560012

    Article  Google Scholar 

  • Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12

    Article  CAS  PubMed  Google Scholar 

  • Shepard FP (1963) Submarine geology. Harper and Row, New York. 557 p

    Google Scholar 

  • Shepard FP, Dill RF (1966) Submarine canyons and other sea valleys. Rand McNally, Chicago, IL. 381 p

    Google Scholar 

  • Sherwood OA, Heikoop JM, Scott DB et al (2005) Stable isotope composition of deep sea gorgonian corals Primnoa spp.: a new archive of surface processes. Mar Ecol Prog Ser 301:135–148

    Article  CAS  Google Scholar 

  • Silva M, Etnoyer PJ, MacDonald I (2016) Coral injuries observed at mesophotic reefs after the Deepwater Horizon oil discharge. Deep Sea Res Pt II 129:96–107

    Article  CAS  Google Scholar 

  • Silveira CB, Cavalcanti GS, Walter JM et al (2017) Microbial processes driving coral reef organic carbon flow. FEMS Microbiol Rev 41:575–595

    Article  CAS  PubMed  Google Scholar 

  • Simister RL, Antzis EW, White HK (2016) Examining the diversity of microbes in a deep-sea coral community impacted by the Deepwater Horizon oil spill. Deep Sea Res Pt II 129:157–166

    Article  CAS  Google Scholar 

  • Smith PJ (2001) Managing biodiversity: Invertebrate bycatch in seamount fisheries in the New Zealand exclusive economic zone (a case study). UNEP workshop on managing global fisheries for biodiversity, Victoria

    Google Scholar 

  • Smith DL, Lord KM (1997) Tectonic evolution and geophysics of the Florida Basement. In: Randazzo AF, Jones DS (eds) The Geology of Florida. University of Florida Press, Gainesville, FL, pp 13–37

    Google Scholar 

  • Smith JE, Schwarcz HP, Risk MJ et al (2000) Paleotemperatures from deep-sea corals: overcoming ‘vital effects’. Palaios 15:25–32

    Article  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39(1):321–346

    Article  CAS  Google Scholar 

  • Streich MK, Ajemian MJ, Wetz JJ, Stunz GW (2017) A comparison of fish community structure at mesophotic artificial reefs and natural banks in the western Gulf of Mexico. Mar Coast Fish Dyn Manag Ecosyst Sci 9:170–189

    Article  Google Scholar 

  • Sturges W (2005) Deep-water exchange between the Atlantic, Caribbean, and Gulf of Mexico. In: Sturges W, Lugo-Fernandez A (eds) Circulation in the Gulf of Mexico. American Geophysical Union, Washington, DC, pp 263–278

    Chapter  Google Scholar 

  • Sturges W, Leben R (2000) Frequency of ring separations from the Loop Current in the Gulf of Mexico: a revised estimate. J Phys Oceanogr 30:1814–1819

    Article  Google Scholar 

  • Sturges W, Lugo-Fernandez A (2005) Circulation in the Gulf of Mexico: Observations and models. American Geophysical Union Geophys Monog Ser 161, Washington, DC. https://doi.org/10.1029/GM161

  • Sulak KJ, Brooks RA, Luke KE et al (2007) Demersal fishes associated with Lophelia pertusa coral and hard-substrate biotopes on the continental slope, northern Gulf of Mexico. Bull Mar Sci 81(3):65–92

    Google Scholar 

  • Sulak KJ, Randall MT, Luke KE et al (eds) (2008) Characterization of Northern Gulf of Mexico deepwater hard bottom communities with emphasis on Lophelia coral. Lophelia reef megafaunal community structure, biotopes, genetics, microbial ecology, and geology (2004–2006): U.S. Geological Survey Open-File Report 2008–1148; OCS Study MMS 2008–015. https://doi.org/10.3133/ofr20081148

  • Sun Z, Hamel J-F, Edinger E, Mercier A (2010a) Reproductive biology of the deep-sea octocoral Drifa glomerata in the Northwest Atlantic. Mar Biol 157:863–873

    Article  Google Scholar 

  • Sun Z, Hamel J-F, Edinger E, Mercier A (2010b) Planulation periodicity, settlement preferences and growth of two deep-sea octocorals from the northwest Atlantic. Mar Ecol Prog Ser 410:71–87

    Article  Google Scholar 

  • Sun Z, Hamel J-F, Edinger E, Mercier A (2011) Planulation, larval biology and early growth of the deep-sea soft corals Gersemia fruticosa and Duva florida (Octocorallia: Alcyonacea). Invert Biol 130(2):91–99

    Article  Google Scholar 

  • Teas P, Orange D, Decker J, Brumley K (2017) High-resolution multibeam reveals surficial character of the Perdido, Mexican Ridges, and Campeche Fold Belt, deep water Gulf of Mexico. In: AAPG annual convention and exhibition, April 2–5, 2017, Houston, TX

    Google Scholar 

  • Thoma JN, Pante E, Brugler MR, France SC (2009) Deep-sea octocorals and antipatharians show no evidence of seamount-scale endemism in the NW Atlantic. Mar Ecol Prog Ser 397:25–35

    Article  CAS  Google Scholar 

  • Thurber RLV, Correa AM (2011) Viruses of reef-building scleractinian corals. J Exp Mar Biol Ecol 408(1–2):102–113

    Article  Google Scholar 

  • Trainor DM, Williams DF, Lerche I (1988) Refinement and spectral analysis of Plio-Pleistocene oxygen and carbon isotope records. Gulf Coast Assoc Geol Soc Trans 38:422–435

    Google Scholar 

  • Trotter JA, Montagna P, McCulloch MT et al (2011) Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy. Earth Planet Sci Lett 303:163–173

    Article  CAS  Google Scholar 

  • Tyler PA (1988) Seasonality in the deep sea. Oceanogr Mar Biol Annu Rev 26:227–258

    Google Scholar 

  • Valentine DL, Fisher GB, Bagby SC et al (2014) Fallout plume of submerged oil from Deepwater Horizon. Proc Nat Acad Sci USA 111:15906–15911. https://doi.org/10.1073/pnas.1414873111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Water JA, Melkonian R, Voolstra CR et al (2017) Comparative assessment of Mediterranean gorgonian-associated microbial communities reveals conserved core and locally variant bacteria. Microb Ecol 73(2):466–478

    Article  CAS  PubMed  Google Scholar 

  • Victorero L, Watling L, Deng Palomares ML, Nouvian C (2018) Out of sight, but within reach: a global history of bottom-trawled deep-sea fisheries from >400m depth. Front Mar Sci 5(98):1–17

    Google Scholar 

  • Vohsen SA, Fisher CR, Baums IB (2019) Metabolomic richness and fingerprints of deep-sea coral species and populations. Metabolomics 15(3):34

    Article  PubMed  PubMed Central  Google Scholar 

  • Vohsen SA, Anderson KE, Gade AM et al (2020) Deep-sea corals provide new insight into the ecology, evolution, and the role of plastids in widespread apicomplexan symbionts of anthozoans. Microbiome 8(1):1–15

    Article  Google Scholar 

  • Wagner D, Luck DG, Toonen RJ (2012) The biology and ecology of black corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). Adv Mar Biol 63:67–132. Academic

    Article  PubMed  Google Scholar 

  • Walker JD, Geissman JW, Bowring SA et al (2018) Geologic time scale v. 5.0. Geological Society of America. https://doi.org/10.1130/2018.CTS005R3C

  • Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24(3):514

    Article  Google Scholar 

  • Weaver DC, Hickerson EL, Schmahl GP (2006a) Deep reef fish surveys by submersible on Alderdice, McGrail, and Sonnier Banks in the Northwestern Gulf of Mexico. In: Emerging technologies for reef fisheries research and management. NOAA, Seattle, WA, pp 69–87 (NOAA Professional Paper NMFS,5)

    Google Scholar 

  • Weaver DC, Naar DF, Donahue BT (2006b) Deepwater reef fishes and multibeam bathymetry of the Tortugas South Ecological Reserve. Florida Keys National Marine Sanctuary, Florida

    Google Scholar 

  • Weber JN, Woodhead PM (1972) Temperature dependence of oxygen-18 concentration in reef coral carbonates. J Geophys Res 77:463–473

    Article  CAS  Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B et al (2007) Metagenomic analysis of microbial community associated with the coral Porites astreoides. Environ Microbiol 9(11):2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer MG, Oregioni D, Groskurth A et al (2019) 33 Diversity of Bacteria Associated with the Cold Water Corals Lophelia pertusa and Madrepora oculata. In: Orejas C, Jiménez C (eds) Mediterranean cold-water corals: past, present and future. Coral reefs of the world, vol 9. Springer, Cham

    Google Scholar 

  • Weinnig AM, Gomez CE, Hallaj A et al (2020) Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure. Sci Rep 10:1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh SE, Inoue M (2000) Loop Current rings and the deep circulation in the Gulf of Mexico. J Geophys Res 105(C7):16951–16959

    Article  Google Scholar 

  • White HK, Hsing P-Y, Cho W et al (2012) Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proc Natl Acad Sci USA 109:20303–20308. https://doi.org/10.1073/pnas.1118029109

    Article  PubMed  PubMed Central  Google Scholar 

  • White HK, Lyons SL, Harrison SJ et al (2014) Long-term persistence of dispersants following the Deepwater Horizon oil spill. Environ Sci Technol Lett 1:295–299. https://doi.org/10.1021/ez500168r

    Article  CAS  Google Scholar 

  • Wienberg C, Titschack J, Freiwald A et al (2018) The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation. Quat Sci Rev 185:135–152

    Article  Google Scholar 

  • Williams B, Risk MJ, Ross SW et al (2007) Stable isotope data from deep-water antipatharians: 400-year records from the southeastern coast of the United States of America. Bull Mar Sci 81:437–447

    Google Scholar 

  • Yang S, Sun W, Zhang F, Li Z (2013) Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea. Mar Biotechnol 15:540–551

    Article  CAS  Google Scholar 

  • Yesson C, Taylor ML, Tittensor DP et al (2012) Global habitat suitability of cold-water octocorals. J Biogeogr 39:1278–1292

    Article  Google Scholar 

  • Young CM, He R, Emlet RB et al (2012) Dispersal of deep-sea larvae from the Intra-American Seas: Simulations of trajectories using ocean models. Int Comp Biol 52(4):483–496

    Article  Google Scholar 

  • Zhang Y, Ling J, Yang Q et al (2015) The functional gene composition and metabolic potential of coral-associated microbial communities. Sci Rep 5:16191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Brooke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brooke, S., Demopoulos, A., Roberts, H., Lunden, J., Sutton, T., Davies, A. (2023). Cold-Water Corals of the World: Gulf of Mexico. In: Cordes, E., Mienis, F. (eds) Cold-Water Coral Reefs of the World. Coral Reefs of the World, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-40897-7_3

Download citation

Publish with us

Policies and ethics

Navigation