A GPU-Accelerated Molecular Docking Workflow with Kubernetes and Apache Airflow

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13999))

Included in the following conference series:

Abstract

Complex workflows play a critical role in accelerating scientific discovery. In many scientific domains, efficient workflow management can lead to faster scientific output and broader user groups. Workflows that can leverage resources across the boundary between cloud and HPC are a strong driver for the convergence of HPC and cloud. This study investigates the transition and deployment of a GPU-accelerated molecular docking workflow that was designed for HPC systems onto a cloud-native environment with Kubernetes and Apache Airflow. The case study focuses on state-of-of-the-art molecular docking software for drug discovery. We provide a DAG-based implementation in Apache Airflow and technical details for GPU-accelerated deployment. We evaluated the workflow using the SWEETLEAD bioinformatics dataset and executed it in a Cloud environment with heterogeneous computing resources. Our workflow can effectively overlap different stages when mapped onto different computing resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://airflow.apache.org/.

  2. 2.

    https://k3d.io/.

References

  1. Adorf, C.S., Dodd, P.M., Ramasubramani, V., Glotzer, S.C.: Simple data and workflow management with the signac framework. Comput. Mater. Sci. 146, 220–229 (2018)

    Article  Google Scholar 

  2. Beltre, A.M., Saha, P., Govindaraju, M., Younge, A., Grant, R.E.: Enabling HPC workloads on cloud infrastructure using Kubernetes container orchestration mechanisms. In: 2019 IEEE/ACM International Workshop on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC), pp. 11–20. IEEE (2019)

    Google Scholar 

  3. Deelman, E., et al.: Pegasus: a framework for map** complex scientific workflows onto distributed systems. Sci. Program. 13(3), 219–237 (2005)

    Google Scholar 

  4. Deelman, E., Vahi, K., Rynge, M., Juve, G., Mayani, R., Da Silva, R.F.: Pegasus in the cloud: science automation through workflow technologies. IEEE Internet Comput. 20(1), 70–76 (2016)

    Article  Google Scholar 

  5. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E., Notredame, C.: Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35(4), 316–319 (2017)

    Article  Google Scholar 

  6. Hasham, K., et al.: CMS workflow execution using intelligent job scheduling and data access strategies. IEEE Trans. Nucl. Sci. 58(3), 1221–1232 (2011)

    Article  Google Scholar 

  7. Jain, A., et al.: Fireworks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput. Pract. Exp. 27(17), 5037–5059 (2015)

    Article  Google Scholar 

  8. LeGrand, S., et al.: GPU-accelerated drug discovery with docking on the summit supercomputer: porting, optimization, and application to COVID-19 research. In: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. BCB ’20, ACM (2020)

    Google Scholar 

  9. Markidis, S., Gadioli, D., Vitali, E., Palermo, G.: Understanding the I/O impact on the performance of high-throughput molecular docking. In: 2021 IEEE/ACM Sixth International Parallel Data Systems Workshop (PDSW), pp. 9–14. IEEE (2021)

    Google Scholar 

  10. Merzky, A., Santcroos, M., Turilli, M., Jha, S.: Radical-pilot: scalable execution of heterogeneous and dynamic workloads on supercomputers. CoRR, abs/1512.08194 (2015)

    Google Scholar 

  11. Misale, C. et al. Towards Standard Kubernetes Scheduling Interfaces for Converged Computing. In: Nichols, J., et al. (eds.) Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation. SMC 2021. CCIS, vol. 1512, pp. 310–326. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96498-6_18

  12. Morris, G.M., et al.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14), 1639–1662 (1998)

    Article  Google Scholar 

  13. Novick, P.A., Ortiz, O.F., Poelman, J., Abdulhay, A.Y., Pande, V.S.: SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery. PLOS ONE 8(11) (2013)

    Google Scholar 

  14. Rogers, D.: ORNL large-scale docking workflow. https://code.ornl.gov/99R/launchad/-/tree/master

  15. Rosa, M.J., Ralha, C.G., Holanda, M., Araujo, A.P.: Computational resource and cost prediction service for scientific workflows in federated clouds. Futur. Gener. Comput. Syst. 125, 844–858 (2021)

    Article  Google Scholar 

  16. Saha, P., Beltre, A., Uminski, P., Govindaraju, M.: Evaluation of docker containers for scientific workloads in the cloud. In: Proceedings of the Practice and Experience on Advanced Research Computing, pp. 1–8 (2018)

    Google Scholar 

  17. Santos-Martins, D., Solis-Vasquez, L., Tillack, A.F., Sanner, M.F., Koch, A., Forli, S.: Accelerating AutoDock4 with GPUs and gradient-based local search. J. Chem. Theory Comput. 17(2), 1060–1073 (2021)

    Article  Google Scholar 

  18. Schieffer, G., Peng, I.: Accelerating drug discovery in AutoDock-GPU with tensor cores. In: Euro-Par 2023: Parallel Processing: 29th International European Conference on Parallel and Distributed Computing (Euro-Par 2023), Proceedings. LNCS, vol. 14100, pp. 1–15. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-39698-4_41

  19. Trifan, A., et al.: Intelligent resolution: integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action. Int. J. High Perform. Comput. Appl. 36(5–6), 603–623 (2022)

    Article  Google Scholar 

  20. Venkatraman, V., et al.: Drugsniffer: an open source workflow for virtually screening billions of molecules for binding affinity to protein targets. Front. Pharmacol. 13 (2022)

    Google Scholar 

  21. Wolstencroft, K., et al.: The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41(W1), W557–W561 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the European Commission under the Horizon project OpenCUBE (GA-101092984).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivy Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Medeiros, D., Schieffer, G., Wahlgren, J., Peng, I. (2023). A GPU-Accelerated Molecular Docking Workflow with Kubernetes and Apache Airflow. In: Bienz, A., Weiland, M., Baboulin, M., Kruse, C. (eds) High Performance Computing. ISC High Performance 2023. Lecture Notes in Computer Science, vol 13999. Springer, Cham. https://doi.org/10.1007/978-3-031-40843-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40843-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40842-7

  • Online ISBN: 978-3-031-40843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation