Helium Abundance Variability at Different Spatial Scales Inside the ICME

  • Conference paper
  • First Online:
Problems of Geocosmos—2022 (ICS 2022)

Abstract

This study is devoted to the changing of the relative helium abundance inside the interplanetary manifestation of coronal mass ejections (ICMEs). Based on the OMNI database and WIND spacecraft measurements, the relationships between the helium abundance and other solar wind parameters are investigated for large (>106 km) and medium (105–106 km) spatial scales. At large scales, the statistical analysis of parameters values shows that the helium abundance increases with growth of the interplanetary magnetic field magnitude, and, as a result, anticorrelates with the plasma parameter β. The obtained results are consistent with the assumption about the existence of an electric current enriched with helium ions in the ICME central region. At scales 105–106 km, structures with significant correlation of the helium abundance and the magnetic field magnitude are observed in less than 5% of cases. In addition, in ~7% of cases there is clear anticorrelation between these two parameters. In general, at medium-scale structures inside the ICME, the dependences between parameters can vary significantly, and no unambiguous relationships between the helium abundance and other solar wind parameters are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schwenn, R.: Solar Wind Sources and Their Variations over the Solar Cycle. In: Baker, D. N., Klecker, B., Schwartz, S. J., Schwenn, R., Von Steiger, R. (eds.) Solar Dynamics and Its Effects on the Heliosphere and Earth. Space Sciences Series of ISSI, vol. 22, pp. 51–76. Springer, New York (2007). https://doi.org/10.1007/978-0-387-69532-7

  2. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Yu.: Catalog of Large-Scale Solar Wind Phenomena during 1976–2000. Cosmic Research 47(2), 81–94 (2009). https://doi.org/10.1134/S0010952509020014

  3. Kilpua, E.K.J., Balogh, A., Von Steiger, R., Liu, Y.D.: Geoeffective Properties of Solar Transients and Stream Interaction Regions. Space Sci. Rev. 212, 1271–1314 (2017). https://doi.org/10.1007/s11214-017-0411-3

    Article  ADS  Google Scholar 

  4. Fairfield, D.H., Cahill Jr., L.J.: Transition region magnetic field and polar magnetic disturbances. J. Geophys. Res. 71(1), 155–169 (1966). https://doi.org/10.1029/JZ071i001p00155

    Article  ADS  Google Scholar 

  5. Rostoker, G., Falthammar, C.-G.: Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth’s surface. J. Geophys. Res. 72(23), 5853–5863 (1967). https://doi.org/10.1029/JZ072i023p05853

    Article  ADS  Google Scholar 

  6. Russell, CT., McPherron, R.L., Burton, R.K.: On the cause of geomagnetic storms. J. Geophys. Res. 79(7), 1105–1109 (1974). https://doi.org/10.1029/JA079i007p01105

    Article  ADS  Google Scholar 

  7. Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Y.: Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 117(A9), A00L07 (2012). https://doi.org/10.1029/2011JA017139

  8. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev M.Yu.: Large-scale solar wind structures: occurrence rate and geoeffectiveness. AIP Conference Proceedings 1216, 648–651 (2010). https://doi.org/10.1063/1.3395949

  9. Gopalswamy, N., Yashiro, S., **e, H., Akiyama, S., Mäkelä, P.: Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res. 120(11), 9221–9245 (2015). https://doi.org/10.1002/2015JA021446

    Article  Google Scholar 

  10. Temmer, M.: Space weather: the solar perspective. Living Rev. Solar Phys. 18, 4 (2021). https://doi.org/10.1007/s41116-021-00030-3

    Article  ADS  Google Scholar 

  11. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., Yermolaev, M.Yu.: Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta. Solar Phys. 292, 193 (2017). https://doi.org/10.1007/s11207-017-1205-1

  12. Hirshberg, J., Bame, S.J., Robbins, D.E.: Solar flares and solar wind helium enrichments: July 1965–July 1967. Solar Phys. 23, 467–486 (1972). https://doi.org/10.1007/bf00148109

    Article  ADS  Google Scholar 

  13. Feldman, W.C., Asbrige, J.R., Bame, S.J., Gosling, J.T.: Long-term variations of selected solar wind properties: IMP 6, 7 and 8 results. J. Geophys. Res. 83(A5), 2177–2189 (1978). https://doi.org/10.1029/JA083IA05P02177

    Article  ADS  Google Scholar 

  14. Yermolaev, Y.I., Stupin, V.V.: Helium abundance and dynamics in different types of solar wind streams: The Prognoz 7 observations. J. Geophys. Res. 102(A2), 2125–2136 (1997). https://doi.org/10.1029/96JA01635

    Article  ADS  Google Scholar 

  15. Yermolaev, Y.I., Lodkina, I.G., Yermolaev, M.Y., Riazantseva, M.O., Rakhmanova, L.S., Borodkova, N.L., Shugay, Yu.S., Slemzin, V.A., Veselovsky, I.S., Rodkin, D.G.: Dynamics of Large‐Scale Solar‐Wind Streams Obtained by the Double Superposed Epoch Analysis: 4. Helium Abundance. J. Geophys. Res. 125(7), e2020JA027878 (2020). https://doi.org/10.1029/2020JA027878

  16. Yermolaev, Yu.I.: Estimation of the Size of an Electric Current with High Helium Abundance inside a Magnetic Cloud. Cosmic Research 57(6), 471–472 (2019). https://doi.org/10.1134/S0010952519060030

    Article  ADS  Google Scholar 

  17. Bavassano, B.: Recent observations of MHD fluctuations in the solar wind. Ann. Geophys. 12, 97–104 (1994). https://doi.org/10.1007/s00585-994-0097-1

    Article  ADS  Google Scholar 

  18. Tu, C.-Y., Marsch, E.: MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73, 1–210 (1995). https://doi.org/10.1007/BF00748891

    Article  ADS  Google Scholar 

  19. Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E., Bavassano, B.: Identifying intermittency events in the solar wind. Planetary and Space Sci. 49(12), 1201–1210 (2001). https://doi.org/10.1016/S0032-0633(01)00061-7

    Article  ADS  Google Scholar 

  20. Borovsky, J.E.: On the flux-tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113(A8), A08110 (2008). https://doi.org/10.1029/2007JA012684

    Article  ADS  Google Scholar 

  21. Owens, M.J., Wicks, R.T., Horbury, T.S.: Magnetic Discontinuities in the Near-Earth Solar Wind: Evidence of In-Transit Turbulence or Remnants of Coronal Structure? Solar Phys. 269, 411–420 (2011). https://doi.org/10.1007/S11207-010-9695-0

    Article  ADS  Google Scholar 

  22. Zastenker, G.N.; Koloskova, I.V.; Riazantseva, M.O.; Yurasov, A.S.; Safrankova, J.; Nemecek, Z.; Prech, L.; Cagas, P.: Observation of fast variations of the helium-ion abundance in the solar wind. Cosmic Research 52(1), 25–36 (2014). https://doi.org/10.1134/S0010952514010109

    Article  Google Scholar 

  23. Khokhlachev, A.A., Yermolaev, Yu.I., Lodkina, I.G., Riazantseva, M.O., Rakhmanova, L.S.: Helium Abundance Variations in Interplanetary Coronal Mass Ejections. Cosmic Research 60(2), 67–72 (2022). https://doi.org/10.1134/S0010952522020046

    Article  ADS  Google Scholar 

  24. Bendat, J.S., Piersol, A.G.: Measurement and Analysis of Random Data. Wiley-Interscience: New York, NY, USA (1971)

    MATH  Google Scholar 

  25. Khokhlachev, A.A., Yermolaev, Y.I., Lodkina, I.G., Riazantseva, M.O., Rakhmanova, L.S.: Helium Abundance Decrease in ICMEs in 23–24 Solar Cycles. Universe 8(11), 557 (2022). https://doi.org/10.3390/universe8110557

    Article  ADS  Google Scholar 

  26. Lin, R.P., Anderson, K.A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G.K., Rème, H., Bosqued, J.M., Coutelier, J., Cotin, F., D'Uston., C., Wenzel, K.-P., Sanderson, T.R., Henrion, J., Ronnet, J.C., Paschmann, G.: A three-dimensional plasma and energetic particle investigation for the wind spacecraft. Space Sci. Rev. 71, 125–153 (1995). https://doi.org/10.1007/BF00751328

  27. Lep**, R.P., Acuna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley E.M.: The WIND magnetic field investigation. Space Sci. Rev. 71, 207–229 (1995). https://doi.org/10.1007/BF00751330

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Khokhlachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khokhlachev, A.A., Yermolaev, Y.I., Riazantseva, M.O., Rakhmanova, L.S., Lodkina, I.G. (2023). Helium Abundance Variability at Different Spatial Scales Inside the ICME. In: Kosterov, A., Lyskova, E., Mironova, I., Apatenkov, S., Baranov, S. (eds) Problems of Geocosmos—2022. ICS 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-40728-4_19

Download citation

Publish with us

Policies and ethics

Navigation