Modeling the Uncertainty of Concurrent Cyclic Processes

  • Chapter
  • First Online:
Declarative Models of Concurrent Cyclic Processes

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 438))

  • 37 Accesses

Abstract

Chapter presents a declarative model of a SCCMP that takes into account fuzzy variables. This model is based on the algebra of ordered fuzzy numbers, which allows avoiding the undesirable effect of the "increasing uncertainty" of results when multiple algebraic operations are performed one after another, i.e., Zadeh's extension principle. This property can be achieved by formulating fuzzy problems of SCCMP behavior analysis and structure synthesis in declarative programming environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhuoning, D., Rulin, Z., Zongji, C., Rui, Z.: Study on UAV path planning approach based on fuzzy virtual force. Chin. J. Aeronaut. 23, 341–350 (2010). https://doi.org/10.1016/S1000-9361(09)60225-9

    Article  Google Scholar 

  2. Milla, F., Saez, D., Cortes, C.E., Cipriano, A.: Bus-stop control strategies based on fuzzy rules for the operation of a public transport system. IEEE Trans. Intell. Transp. Syst. 13, 1394–1403 (2012). https://doi.org/10.1109/TITS.2012.2188394

    Article  Google Scholar 

  3. Bocewicz, G., Banaszak, Z., Nielsen, I.: Multimodal processes prototy** subject to fuzzy operation time constraints. IFAC-PapersOnLine 48, 2103–2108 (2015). https://doi.org/10.1016/j.ifacol.2015.06.399

    Article  MATH  Google Scholar 

  4. Bocewicz, G., Nielsen, I.E., Banaszak, Z.A.: Production flows scheduling subject to fuzzy processing time constraints. Int. J. Comput. Integr. Manuf. 29, 1105–1127 (2016). https://doi.org/10.1080/0951192X.2016.1145739

    Article  Google Scholar 

  5. Wójcik. R., Nielsen, I., Bocewicz, G., Banaszak, Z.: Multimodal processes optimization subject to fuzzy operation time constraints. In: Distributed Computing and Artificial Intelligence, 12th International Conference. Advances in Intelligent Systems and Computing, pp. 313–322 (2015)

    Google Scholar 

  6. Pustokhina, I., Pustokhin, D., Lydia, E., et al.: Energy efficient neuro-fuzzy cluster based topology construction with metaheuristic route planning algorithm for unmanned aerial vehicles. Comput. Netw. 196, 108214 (2021). https://doi.org/10.1016/J.COMNET.2021.108214

    Article  Google Scholar 

  7. Izadikhah, M., Azadi, M., Toloo, M., Hussain, F.K.: Sustainably resilient supply chains evaluation in public transport: a fuzzy chance-constrained two-stage DEA approach. Appl. Soft Comput. 113, 107879 (2021). https://doi.org/10.1016/J.ASOC.2021.107879

    Article  Google Scholar 

  8. Özturk, F., Ünver, S.: Fuzzy linear programming approach for the capacitated vehicle routing problem. Journal of Turk. Oper. Manag. 6, 1239–1251 (2022). https://doi.org/10.56554/JTOM.1040070

  9. Mir H.S., ben Abdelaziz, F.: Cyclic task scheduling for multifunction radar. IEEE Trans. Autom. Sci. Eng. 9, 529–537 (2012). https://doi.org/10.1109/TASE.2012.2197857

  10. Atkins, E.M., Durfee, E.H., Shin, K.G.: Plan Development Using Local Probabilistic Models, pp. 49–56 (2013). https://doi.org/10.48550/arxiv.1302.3554

  11. Rudy, J.: Cyclic scheduling line with uncertain data. In: Rutkowski, L., Korytkowski, M., Scherer, R., et al. (eds.) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science, pp. 311–320. Springer (2016)

    Google Scholar 

  12. Huynh, Q.T., Nguyen, N.T.: Probabilistic method for managing common risks in software project scheduling based on program evaluation review technique. IJITPM 11, 77–94 (2020). https://doi.org/10.4018/IJITPM.2020070105

    Article  Google Scholar 

  13. Piegat, A.: Fuzzy Modeling and Control. Physica-Verlag HD, Heidelberg (2001)

    Book  MATH  Google Scholar 

  14. Lin, C., Hsieh, P.J.: A fuzzy decision support system for strategic portfolio management. Decis. Support Syst. 38, 383–398 (2004). https://doi.org/10.1016/S0167-9236(03)00118-0

    Article  Google Scholar 

  15. Ngai, E.W.T., Wat, F.K.T.: Fuzzy decision support system for risk analysis in e-commerce development. Decis. Support Syst. 40, 235–255 (2005). https://doi.org/10.1016/J.DSS.2003.12.002

    Article  Google Scholar 

  16. Kaur, A., Kacprzyk, J., Kumar, A.: Fuzzy Transportation and Transhipment Problems. Springer International Publishing, Cham (2020)

    Book  MATH  Google Scholar 

  17. González Rodríguez, G., Gonzalez-Cava, J.M., Méndez Pérez, J.A.: An intelligent decision support system for production planning based on machine learning. J. Intell. Manuf. 31, 1257–1273 (2020). https://doi.org/10.1007/S10845-019-01510-Y/FIGURES/10

    Article  Google Scholar 

  18. He, Y., Xu, J.: A class of random fuzzy programming model and its application to vehicle routing problem. UK World J. Model. Simul. 1, 3–11 (2005)

    Google Scholar 

  19. Kosiński, W.: On fuzzy number calculus. Int. J. Appl. Math. Comput. Sci. 16, 51–57 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Prokopowicz, P., Czerniak, J., Mikołajewski, D., et al.: Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński. Springer Nature, Cham (2017)

    Google Scholar 

  21. Zarzycki, H., Czerniak, J.M., Dobrosielski, W.T.: Detecting Nasdaq composite index trends with OFNs. Stud. Fuzziness Soft Comput. 356, 195–205 (2017). https://doi.org/10.1007/978-3-319-59614-3_11/TABLES/4

    Article  MATH  Google Scholar 

  22. Pisz, I., Chwastyk, A., Łapuńka, I.: Assessing the profitability of investment projects using ordered fuzzy numbers. LogForum 15, 377–389 (2019). https://doi.org/10.17270/J.LOG.2019.342

  23. Chwastyk, A.: Applications of ordered fuzzy numbers in medicine. In: Uncertainty and Imprecision in Decision Making and Decision Support: New Challenges, Solutions and Perspectives. IWIFSGN 2018. Advances in Intelligent Systems and Computing, pp. 103–112. Springer (2021)

    Google Scholar 

  24. Zarzycki, H., Apiecionek, Ł., Czerniak, J.M., Ewald, D.: The proposal of fuzzy observation and detection of massive data DDOS attack threat. Adv. Intell. Syst. Comput. AISC 1081, 363–378 (2021). https://doi.org/10.1007/978-3-030-47024-1_34

  25. Piasecki, K., Łyczkowska-Hanćkowiak, A.: Representation of Japanese candlesticks by oriented fuzzy numbers. Econometrics 8, 1 (2020). https://doi.org/10.3390/ECONOMETRICS8010001

    Article  Google Scholar 

  26. Rudnik, K., Kacprzak, D.: Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system. Appl. Soft Comput. 52, 1020–1041 (2017). https://doi.org/10.1016/J.ASOC.2016.09.027

    Article  Google Scholar 

  27. Piasecki, K., Roszkowska, E.: On application of ordered fuzzy numbers in ranking linguistically evaluated negotiation offers. Adv. Fuzzy Syst. 2018, 12 (2018). https://doi.org/10.1155/2018/1569860

    Article  MathSciNet  MATH  Google Scholar 

  28. Bocewicz, G., Banaszak, Z., Nielsen, I.: Multimodal processes prototy** subject to grid-like network and fuzzy operation time constraints. Ann. Oper. Res. 273, 561–585 (2019). https://doi.org/10.1007/s10479-017-2468-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Bocewicz, G., Banaszak, Z., Rudnik, K., et al.: An ordered-fuzzy-numbers-driven approach to the milk-run routing and scheduling problem. J. Comput. Sci. 49, 101288 (2021). https://doi.org/10.1016/j.jocs.2020.101288

    Article  MathSciNet  Google Scholar 

  30. Radzki, G., Bocewicz, G., Golinska-Dawson, P., et al.: Periodic planning of UAVs’ fleet mission with the uncertainty of travel parameters. In: IEEE International Conference on Fuzzy Systems. Luxembourg, pp. 1–8 (2021b)

    Google Scholar 

  31. Ruttkay, Z.: Fuzzy constraint satisfaction. In: IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1263–1268 (1994). https://doi.org/10.1109/FUZZY.1994.343640

  32. Vanegas, M.C., Bloch, I., Inglada, J.: Fuzzy constraint satisfaction problem for model-based image interpretation. Fuzzy Sets Syst. 286, 1–29 (2016). https://doi.org/10.1016/J.FSS.2014.10.025

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Bocewicz .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bocewicz, G. (2023). Modeling the Uncertainty of Concurrent Cyclic Processes. In: Declarative Models of Concurrent Cyclic Processes. Studies in Systems, Decision and Control, vol 438. Springer, Cham. https://doi.org/10.1007/978-3-031-40552-5_4

Download citation

Publish with us

Policies and ethics

Navigation