Invariant Analysis of Vortical Delta Wing Flow Using the Extended Optimal Triple Tensor Decomposition

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XIV (STAB/DGLR Symposium 2022)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 154))

Included in the following conference series:

  • 386 Accesses

Abstract

Vortices and vortex breakdown flow structures over a multi-delta wing configuration are often analyzed by applying flow field invariant analysis techniques from critical point theory and flow topology research. In particular the three invariants of the velocity gradient tensor are used to classify and analyze flow fields, mainly for the assignment of vortical flow regions and assessment of their stability. In this work, the extended optimal triple tensor decomposition is applied to the vortical flow field delivering new tensor fields which allow to recalculate the rate of strain and rotation tensors in an associated basic reference frame. These new tensor fields contain separated distinct flow properties. After retransformation into the original coordinate system, flow field invariant analysis techniques applied to these newly derived tensor fields provide further insights into the dynamics of vortical flows over delta wings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boukharfane, R., Er-raiy, A., Alzaben, L., Parsani, M.: Triple decomposition of velocity gradient tensor in compressible turbulence. Fluids 6, 98 (2021)

    Article  Google Scholar 

  2. Breitsamter, C.: Unsteady flow phenomena associated with leading-edge vortices. Progr. Aerosp. Sci. 44, 48–65 (2008)

    Article  Google Scholar 

  3. Chakraborty, P., Balachandar, S., Adrian, R.J.: On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189–214 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2(5), 261–265 (1990)

    Article  MathSciNet  Google Scholar 

  5. Gao, F., Han, L.: Implementing the Nelder-Mead simplex algorithm with adaptive parameters. J. Comput. Optim. Appl. 51, 259–277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gursul, I., Gordnier, R., Visbal, M.: Unsteady aerodynamics of nonslender delta wings. Progr. Aerosp. Sci. 41, 515–557 (2005)

    Article  Google Scholar 

  7. Haller, G., Hadjighasem, A., Farazmand, M., Huhn, F.: Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 795, 136–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hunt, J.R.C., Wray, A.A., Moin, P.: Eddies, streams and convergence zones in turbulent flows. Center of Turbulence Research Report CTR-S88, pp. 193–208 (1988)

    Google Scholar 

  9. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Comput. Optim. Appl. 79, 157–181 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Kolář, V.: Vortex identification: new requirements and limitations. Int. J. Heat Fluid Flow 28, 638–652 (2007)

    Article  Google Scholar 

  12. Kolář, V., Šístek, J., Fehmi Cirak, F., Moses, P.: Average corotation of line segments near a point and vortex identification. AIAA J. 51(11), 2678–2694 (2013)

    Article  Google Scholar 

  13. Lambourne, N.C., Bryer, D.W.: The bursting of leading-edge vortices - some observations and discussion of the phenomenon. ARC R & M, No. 3282 (1961)

    Google Scholar 

  14. Lugt, H.J.: The dilemma of defining a vortex. In: Müller, U., Roesner, K.G., Schmidt, B. (eds.) Theoretical and Experimental Fluid Mechanics, pp. 309–321. Springer, Heidelberg (1979). https://doi.org/10.1007/978-3-642-67220-0_32

    Chapter  Google Scholar 

  15. Moffat, H.K., Tsinober, A. (ed.): Topological Fluid Mechanics. Proceedings of the IUTAM Symposium in Cambridge (1989)

    Google Scholar 

  16. Truesdell, C.: The Kinematics of Vorticity. Indiana University Press (1954)

    Google Scholar 

  17. Zastrow, J., Probst, A.: Vortex topology mode alternation in hybrid RANS-LES simulations of transonic flow over the DLR-F23 combat aircraft wind tunnel model. In: Stab Symposium (2022)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge that this work could be conducted within the project “DIABOLO” funded by DLR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rütten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rütten, M., Werner, M., Zastrow, J. (2024). Invariant Analysis of Vortical Delta Wing Flow Using the Extended Optimal Triple Tensor Decomposition. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Weiss, J. (eds) New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-031-40482-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40482-5_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40481-8

  • Online ISBN: 978-3-031-40482-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation