Plucking Polynomial of Rooted Trees and Its Use in Knot Theory

  • Chapter
  • First Online:
Lectures in Knot Theory

Part of the book series: Universitext ((UTX))

  • 405 Accesses

Abstract

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 46.00
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 58.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first published account of using q-commutativity relation to get the Gaussian polynomial \(\binom {n}{i, n-i}_q\) seems to be given in the papers [Pot] in 1950 and [Schüt] in 1953.

  2. 2.

    The nth cyclotomic polynomial is the minimal polynomial over \(\mathbb {Q}\) with root e2πin, denoted Φn(q). We can write this polynomial as \(\varPhi _n(q) = \prod \limits _{ \substack {\omega ^n =1 , \omega ^k \neq 1 \text{ for } k<n}} (q- \omega )\). An important property to note is that we can write qn − 1 as a product of cyclotomic polynomials, \(\prod \limits _{d \mid n} \varPhi _d(q).\)

References

  1. Z. Cheng, S. Mukherjee, J. H. Przytycki, X. Wang and S. Y. Yang, Realization of plucking polynomials, J. Knot Theory Ramifications 26( 2017), no. 2, 1740016, 9pp.

    Google Scholar 

  2. Z. Cheng, S. Mukherjee, J. H. Przytycki, X. Wang, S. Y. Yang, Strict unimodality of q-polynomials of rooted trees, J. Knot Theory Ramifications 27 (2018), no. 7, 1841009, 19 pp. ar**v:1601.03465 [math.CO].

  3. Z. Cheng, S. Mukherjee, J. H. Przytycki, X. Wang, S. Y. Yang, Rooted trees with the same plucking polynomials, Osaka J. Math. 56 (2019), no. 3, 661–674. ar**v:1702.02004 [math.GT].

  4. M. K. Da̧bkowski, C. Li, J. H. Przytycki, Catalan states of lattice crossing, Topology and its Applications, 182, March, 2015, 1–15; e-print: ar**v:1409.4065 [math.GT]

  5. M. K. Da̧bkowski, J. H. Przytycki, Catalan states of lattice crossing: an application of the plucking polynomial, Topology and its applications, 254, 12–28, 2019.

    Google Scholar 

  6. M. K. Da̧bkowski, J. H. Przytycki, Catalan states of lattice crossing: III; in preparation.

    Google Scholar 

  7. G. Mathews (1917). Combinatory Analysis. Vol. II. By Major P. A. Macmahon. Pp. xix 340. 18s. net. 1916. (Camb. Univ. Press.). The Mathematical Gazette, 9(128), 52–52. https://doi.org/10.2307/3605230

    Article  Google Scholar 

  8. H. S. A. Potter, On the latent roots of quasi-commutative matrices. Amer. Math. Monthly, 57, 1950, 321–322

    Google Scholar 

  9. J. H. Przytycki, q-polynomial invariant of rooted trees; Arnold Mathematical Journal, 2(4), 449–461, 2016; E-print: ar**v:1604.02075 [math.CO].

  10. J. H. Przytycki, Knots and Graphs: two centuries of interaction; in Knot Theory and Its Applications Contemporary Mathematics, Vol. 670, 171–257, September, 2016.

    Google Scholar 

  11. M. P. Schützenberger, Une interprétation de certaines solutions de l’Équation fonctionnelle: F(x + y) = F(x)F(y), C. R. Acad. Sci. Paris, 236 (1953) 352–353.

    Google Scholar 

  12. R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics,and geometry, Ann. New York Sci., 576, New York Acad. Sci., New York,1989, 500–535.

    Google Scholar 

  13. J.J. Sylvester, Proof of the hitherto undemonstrated fundamental theorem of invariants, The Collect. Math. Papers of James Joseph Sylvester, vol. 3, Chelsea, New York, 1973, pp. 117–126.

    Google Scholar 

  14. A. Wintner, Asymptotic distributions and infinite convolutions, Edwards Brothers, Ann Arbor, Michigan, 1938.

    Google Scholar 

  15. S. Yamada, A topological invariant of spatial regular graphs, in: Proc. Knots 90, De Gruyter, Berlin, 1992, pp. 447–454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Przytycki, J.H., Bakshi, R.P., Ibarra, D., Montoya-Vega, G., Weeks, D. (2024). Plucking Polynomial of Rooted Trees and Its Use in Knot Theory. In: Lectures in Knot Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-031-40044-5_10

Download citation

Publish with us

Policies and ethics

Navigation