Fabrication of Polymeric Nanomaterials

  • Chapter
  • First Online:
Polymeric Nanoparticles for Bovine Mastitis Treatment

Abstract

Nanofabrication involves the systematic framework of individual elements or molecules of inorganic or organic substances. Micelles were the first polymeric nanoparticles to be created by polymerization techniques. Multiple techniques developed for synthesizing polymeric nanoparticles, each tailored to specific needs of particular application or set of physicochemical properties of a specific drug. The process of mechanically compressing bulk substances employing template unless original size is greater than nanovalue. Top-down approaches include milling, laser ablation, etching, sputtering, and electroexplosion. The first approach devised for polymeric NPs from preformed polymer was solvent evaporation where a polar organic solvent serves to dissolve polymer and add then active component are dispersed. Emulsification-solvent evaporation is employed for polymeric NPs fabrication with dimensions of approximately 100 nm, also to acquire nanospheres or nanocapsules. Active principles dissolved or dispersed in a polymeric solution to create nanospheres, while drugs dissolved in oil followed by emulsified in an organic polymeric solution to create nanocapsules, which are then dispersed in an external phase. This method operates on the basis of polymer interfacial deposition upon transit of organic solvent passes from lipophilic to aqueous phase. Nanoparticles can be physically labeled with a tag like a dye, magnetic particle, or radioactive marker. Numerous imaging approaches, notably fluorescence microscopy, magnetic resonance imaging (MRI), and positron emission tomography (PET), can detect a physical identification. Methods for chemically labeling nanoparticles involve the attachment to particular functional groups that can react with target molecules or receptors such as to target particular receptors on cancer cells, scientists have coupled polymeric nanoparticles with ligands including folate, transferrin, or epidermal growth factor. Using diverse techniques, such as avidin–biotin, streptavidin–biotin, and covalent bonding, researchers have functionalized polymeric nanoparticles with antibodies that target specific cancer cells, such as breast cancer or melanoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao J, Wu P, Fernandez A, Zhuang J, Thayumanavan S (2020) Cellular and gates: synergistic recognition to boost selective uptake of polymeric nanoassemblies. Angew Chemie 132:10542–10546. https://doi.org/10.1002/ange.202002748

    Article  Google Scholar 

  2. Birrenbach G, Speiser PP (1976) Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 65:1763–1766. https://doi.org/10.1002/jps.2600651217

    Article  CAS  PubMed  Google Scholar 

  3. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058. https://doi.org/10.1007/s11095-008-9800-3

    Article  CAS  PubMed  Google Scholar 

  4. Katmıs A, Fide S, Karaismailoglu S, Derman S (2019) Synthesis and characterization methods of polymeric nanoparticles. Charact Appl Nanomater 2:60. https://doi.org/10.24294/can.v2i2.791

  5. Nasir A, Kausar A, Younus A (2015) A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym Plast Technol Eng 54:325–341. https://doi.org/10.1080/03602559.2014.958780

    Article  CAS  Google Scholar 

  6. Gdowski A, Johnson K, Shah S, Gryczynski I, Vishwanatha J, Ranjan A (2018) Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnology 16:12. https://doi.org/10.1186/s12951-018-0339-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Długosz O, Banach M (2020) Inorganic nanoparticle synthesis in flow reactors—applications and future directions. React Chem Eng 5:1619–1641. https://doi.org/10.1039/D0RE00188K

    Article  Google Scholar 

  8. Tyagi R, Garg N, Shukla R, Bisen P (2020) Role of novel drug delivery vehicles in nanobiomedicine. IntechOpen. https://doi.org/10.5772/intechopen.77468

    Article  Google Scholar 

  9. Kalaydina R-V, Bajwa K, Qorri B, DeCarlo A, Szewczuk MR (2018) Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 13:4727–4745. https://doi.org/10.2147/IJN.S168053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Allemann E, Gurny R, Doelker E (1993) Drug-loaded nanoparticles—preparation methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191

    CAS  Google Scholar 

  11. Barratt GM (2000) Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today 3:163–171. https://doi.org/10.1016/S1461-5347(00)00255-8

    Article  CAS  PubMed  Google Scholar 

  12. Ameen F, Alsamhary K, Alabdullatif JA, ALNadhari S (2021) A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol Environ Saf 213:112027. https://doi.org/10.1016/j.ecoenv.2021.112027

  13. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery, In: Application of nanotechnology in drug delivery. InTech. https://doi.org/10.5772/58422

  15. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M (2022) Scale-up polymeric-based nanoparticles drug delivery systems: development and challenges. OpenNano 7:100048. https://doi.org/10.1016/J.ONANO.2022.100048

    Article  Google Scholar 

  16. Prajapati SK, Jain A, Jain A, Jain S (2019) Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J 120:109191. https://doi.org/10.1016/j.eurpolymj.2019.08.018

    Article  CAS  Google Scholar 

  17. Reis MH, Leibfarth FA, Pitet LM (2020) Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials. ACS Macro Lett 9:123–133. https://doi.org/10.1021/acsmacrolett.9b00933

    Article  CAS  PubMed  Google Scholar 

  18. Baer DR (2018) The chameleon effect: characterization challenges due to the variability of nanoparticles and their surfaces. Front Chem 6. https://doi.org/10.3389/fchem.2018.00145

  19. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  20. Bohrey S, Chourasiya V, Pandey A (2016) Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 3:3. https://doi.org/10.1186/s40580-016-0061-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731. https://doi.org/10.3390/molecules25163731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szczęch M, Szczepanowicz K (2020) Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials 10:496. https://doi.org/10.3390/nano10030496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crucho CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C 80:771–784. https://doi.org/10.1016/j.msec.2017.06.004

    Article  CAS  Google Scholar 

  24. Leroux JC, Allemann E, Doelker E, Gurny R (1995) New approach for the preparation of nanoparticles by an emulsification-diffusion method. Eur J Pharm Biopharm 41:14–18

    CAS  Google Scholar 

  25. Moinard-Chécot D, Chevalier Y, Briançon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci 317:458–468. https://doi.org/10.1016/j.jcis.2007.09.081

    Article  CAS  PubMed  Google Scholar 

  26. Zielinska A, Carreiró F, Oliveira AM, Neves A, Pires B, Nagasamy Venkatesh D, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731. https://doi.org/10.3390/MOLECULES25163731

  27. Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, Li Y, Hou S (2008) PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency. Int J Pharm 350:320–329. https://doi.org/10.1016/j.ijpharm.2007.08.034

    Article  CAS  PubMed  Google Scholar 

  28. Konan YN, Gurny R, Allémann E (2002) Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm 233:239–252. https://doi.org/10.1016/S0378-5173(01)00944-9

    Article  CAS  PubMed  Google Scholar 

  29. Becker Peres L, Becker Peres L, de Araújo PHH, Sayer C (2016) Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Coll Surf B Biointerfaces 140:317–323. https://doi.org/10.1016/j.colsurfb.2015.12.033

  30. Winkler JS, Barai M, Tomassone MS (2019) Dual drug-loaded biodegradable Janus particles for simultaneous co-delivery of hydrophobic and hydrophilic compounds. Exp Biol Med 244:1162–1177. https://doi.org/10.1177/1535370219876554

    Article  CAS  Google Scholar 

  31. Zweers MLT, Grijpma DW, Engbers GHM, Feijen J (2003) The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. J Biomed Mater Res 66B:559–566. https://doi.org/10.1002/jbm.b.10046

    Article  CAS  Google Scholar 

  32. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4. https://doi.org/10.1016/0378-5173(89)90281-0

    Article  CAS  Google Scholar 

  33. Sánchez-López E, Egea MA, Davis BM, Guo L, Espina M, Silva AM, Calpena AC, Maria E, Souto B, Ravindran N, Ettcheto M, Camins A, García ML, Cordeiro MF (2017) Memantine‐loaded PEGylated biodegradable nanoparticles for the treatment of glaucoma. Wiley Online Libr 14. https://doi.org/10.1002/smll.201701808

  34. Cañadas C, Alvarado H, Calpena AC, Silva AM, Souto EB, García ML, Abrego G (2016) In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int J Pharm 511:719–727. https://doi.org/10.1016/j.ijpharm.2016.07.055

    Article  CAS  PubMed  Google Scholar 

  35. Bilati U, Allémann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75. https://doi.org/10.1016/j.ejps.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  36. Bilati U, Allémann E, Doelker E (2005) Nanoprecipitation versus emulsion-based techniques or the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech 6. https://doi.org/10.1208/PT060474

  37. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M (2017) Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci 12:1. https://doi.org/10.4103/1735-5362.199041

    Article  PubMed  PubMed Central  Google Scholar 

  38. Martínez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, Galindo Rodríguez SA, Román RA, Fessi H, Elaissari A (2017) Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm 532:66–81. https://doi.org/10.1016/j.ijpharm.2017.08.064

  39. **e H, Smith JW (2010) Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system. J. Nanobiotechnology. 8:1–7. https://doi.org/10.1186/1477-3155-8-18/FIGURES/4

    Article  Google Scholar 

  40. Schubert S, Delaney JT Jr, Schubert US (2011) Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter 7:1581–1588. https://doi.org/10.1039/C0SM00862A

    Article  CAS  Google Scholar 

  41. Leo E, Brina B, Forni F, Vandelli MA (2004) In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int J Pharm 278:133–141. https://doi.org/10.1016/j.ijpharm.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  42. Guo P, Huang J, Zhao Y, Martin CR, Zare RN, Moses MA (2018) Nanomaterial preparation by extrusion through nanoporous membranes. Small 14:1703493. https://doi.org/10.1002/smll.201703493

    Article  CAS  Google Scholar 

  43. Pineda-Reyes AM, Hernández Delgado M, De La Luz Zambrano-Zaragoza M, Leyva-Gómez G, Mendoza-Muñoz N, Quintanar-Guerrero D (2021) Implementation of the emulsification-diffusion method by solvent displacement for polystyrene nanoparticles prepared from recycled material. RSC Adv 11:2226–2234. https://doi.org/10.1039/D0RA07749F

  44. Sanli D, Bozbag SE, Erkey C (2012) Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations. J Mater Sci 47:2995–3025. https://doi.org/10.1007/s10853-011-6054-y

  45. Fages J, Lochard H, Letourneau J-J, Sauceau M, Rodier E (2004) Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technol 141:219–226. https://doi.org/10.1016/j.powtec.2004.02.007

    Article  CAS  Google Scholar 

  46. Perrut M, Jung J, Leboeuf F (2005) Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes. Int J Pharm 288:11–16. https://doi.org/10.1016/j.ijpharm.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  47. Ginty PJ, Whitaker MJ, Shakesheff KM, Howdle SM (2005) Drug delivery goes supercritical. Mater Today 8:42–48. https://doi.org/10.1016/S1369-7021(05)71036-1

    Article  Google Scholar 

  48. Mishima K (2008) Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deliv Rev 60:411–432. https://doi.org/10.1016/j.addr.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  49. Elizondo E, Veciana J, Ventosa N (2012) Nanostructuring molecular materials as particles and vesicles for drug delivery, using compressed and supercritical fluids. Nanomedicine 7:1391–1408. https://doi.org/10.2217/nnm.12.110

    Article  CAS  PubMed  Google Scholar 

  50. Proença PLF, Carvalho LB, Campos EVR, Fraceto LF (2022) Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanoparticles in plants. Adv Colloid Interface Sci 305:102695. https://doi.org/10.1016/j.cis.2022.102695

    Article  CAS  PubMed  Google Scholar 

  51. Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML (2020) Magnetic nanoparticles as MRI contrast agents. Top Curr Chem 378:40. https://doi.org/10.1007/s41061-020-00302-w

    Article  CAS  Google Scholar 

  52. Wu S, Helal-Neto E, Matos APDS, Jafari A, Kozempel J, Silva YJDA, Serrano-Larrea C, Alves Junior S, Ricci-Junior E, Alexis F, Santos-Oliveira R (2020) Radioactive polymeric nanoparticles for biomedical application. Drug Deliv 27:1544–1561. https://doi.org/10.1080/10717544.2020.1837296

  53. Abstiens K, Fleischmann D, Gregoritza M, Goepferich AM (2019) Gold-tagged polymeric nanoparticles with spatially controlled composition for enhanced detectability in biological environments. ACS Appl. Nano Mater 2:917–926. https://doi.org/10.1021/acsanm.8b02165

    Article  CAS  Google Scholar 

  54. Acharya S, Dilnawaz F, Sahoo SK (2009) Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30:5737–5750. https://doi.org/10.1016/J.BIOMATERIALS.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  55. Yu B, Tai HC, Xue W, Lee LJ, Lee RJ (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27:286–298. https://doi.org/10.3109/09687688.2010.521200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim J, Wilson DR, Zamboni CG, Green JJ (2015) Targeted polymeric nanoparticles for cancer gene therapy. J Drug Target 23:627–641. https://doi.org/10.3109/1061186X.2015.1048519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kahn M, Kim Y-M (2014) The role of the Wnt signaling pathway in cancer stem cells: prospects for drug development. Res Reports Biochem 4:1. https://doi.org/10.2147/RRBC.S53823

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haider .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, A., Ikram, M., Shahzadi, I., Asif Raza, M. (2023). Fabrication of Polymeric Nanomaterials. In: Polymeric Nanoparticles for Bovine Mastitis Treatment. Springer Series in Biomaterials Science and Engineering, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-39947-3_2

Download citation

Publish with us

Policies and ethics

Navigation