Part of the book series: Statistics for Biology and Health ((SBH))

  • 160 Accesses

Abstract

The theory of sampling has been well described in the literature, but with less emphasis on density estimation. The topics covered are simple random sampling and associated design implications such as plot shape, proportion of area sampled, and number of plots to be used. Irregular shaped areas can be included in the theory, as well as the use of primary and secondary plots. Stratified sampling and associated design questions are discussed. Side issues considered are edge effects in using plots and the related issue of the home range of animals. Various spatial distributions are described for the number of individuals on a plot, which lead to the problem of sampling widely dispersed but clustered populations where the method of adaptive sampling can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 96.29
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anan, O., Böhning, D., & Maruotti, A. (2007). Journal of Statistical Computation and Simulation, 87(10), 2094–2114.

    Article  Google Scholar 

  • Anderson, D. R. (2001). The need to get the basics right in wildlife field studies. Wildlife Society Bulletin, 29(4), 1294–1297.

    Google Scholar 

  • Bart, J., Droege, S., Geissler, P., Peterjohn, B., & Ralph, C. J. (2004). Density estimation in wildlife surveys. Wildlife Society Bulletin, 32(4), 1242–1247.

    Article  Google Scholar 

  • Becker, E. F., Golden, H. N., & Gardner, C. L. (2004). Using probability sampling of animal tracks in snow to estimate population size. In W. L. Thompson (Ed.), Sampling rare or elusive species: Concepts, designs, and techniques for estimating population parameters (pp. 248–270). Washington, D.C.: Island Press.

    Google Scholar 

  • Binns, M. R. (1986). Behavioural dynamics and the negative binomial distribution. Oikos, 47(3), 315–318.

    Article  Google Scholar 

  • Bohk, C., Rau, R., & Cohen, J. E. (2015). Taylor’s power law in human mortality. Demographic Research, 33(1), 589–610.

    Article  Google Scholar 

  • Burgman, M. A., & Fox, J. C. (2003). Bias in species range estimates from minimum convex polygons: Implications for conservation and options for improved planning. Animal Conservation, 6(1), 19–28.

    Article  Google Scholar 

  • Butler, S., & Bird, F. L. (2007). Estimating density of intertidal ghost shrimps using counts of burrow openings. Is the method reliable? Hydrobiologia, 589(1), 303–314.

    Article  Google Scholar 

  • Dice, L. R. (1938). Some census methods for mammals. Journal of Wildlife Management, 2(3), 119–130.

    Article  Google Scholar 

  • Downs, J. A., Horner, M. W., & Tucker, A. D. (2011). Time-geographic density estimation for home range analysis. Annals of Geographic Information Sciences, 17(3), 163–171.

    Google Scholar 

  • Eberhardt, L. L., & Simmons, M. A. (1987). Calibrating population indices by double sampling. Journal of Wildlife Management, 51(3), 665–675.

    Article  Google Scholar 

  • Fattorini, L., Puletti, N, & et al. (2016). Checking the performance of point and plot sampling on aerial photoimagery of a large-scale population of trees outside forests. Canadian Journal of Forest Research, 46(11), 1264–1274.

    Google Scholar 

  • Getz, W. M., Fortmann-Roe, C., Cross, P. C., Lyons, A. J., Ryan, S. J., & Wilmers, C. C. (2007). LoCoH: Nonparametric kernel methods for constructing home ranges and utilization distributions. PLoS One, 2(2), e207.

    Article  Google Scholar 

  • Getz, W. M., & Wilmers, C. C. (2004). A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography, 27(4), 489–505.

    Article  Google Scholar 

  • Gregoire, T. G., & Scott, C. T. (2003). Altered selection probabilities caused by avoiding the edge in field surveys. Journal of Agricultural, Biological, and Environmental Statistics, 8(1), 36–47.

    Article  Google Scholar 

  • Greig-Smith, P. (1964). Quantitative plant ecology (2nd ed.). Washington, D.C.: Butterworth.

    Google Scholar 

  • Henderson, P. A. (2021). Southwoods ecological methods (5th ed.). Chichester: Wiley.

    Book  Google Scholar 

  • Hilbe, J. M. (2011). Negative binomial regression: Modelling overdispersed count data. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Horne, J. S., Garton, E. O., Krone, S. M., & Lewis, J. S. (2007). Analyzing animal movements using Brownian Bridges. Ecology, 88(9), 2354–2363.

    Article  Google Scholar 

  • Hou, Z., Xu, Q., Hartikainen, S., & et al. (2015). Impact of plot size and spatial pattern of forest attributes on sampling efficacy. Forest Science, 61(5), 847–860.

    Google Scholar 

  • Johnson, D. H. (2008). In defense of indices: The case of bird surveys. Journal of Wildlife Management, 72(4), 857–868.

    Article  Google Scholar 

  • Kansanen, K., Packalen, P., Maltamo, M., & Mehtätalo, L. (2021). Horvitz-Thompson–like estimation with distance-based detection probabilities for circular plot sampling of forests. Biometrics, 77(2), 715–728.

    Article  Google Scholar 

  • Karanth, K. U., Nichols, J. D., & Kumar, N. S. (2004). Photographic sampling of elusive mammals in tropical forests. In W. L. Thompson (Ed.), Sampling rare or elusive species: Concepts, designs, and techniques for estimating population parameters (pp. 229–247). Washington, D.C.: Island Press.

    Google Scholar 

  • Linden, A., Mantyniemi, S., & Fortin, M. (2011). Ecology, 92(7), 1414–1421.

    Article  Google Scholar 

  • Link, W. A., & Barker, R. J. (1994). Density estimation using the trap** web design: A geometric analysis. Biometrics, 50(3), 733–745.

    Article  Google Scholar 

  • Liu, S., Baret, F., & et al. (2017a). A method to estimate plant density and plant spacing heterogeneity: Application to wheat crops. Plant Methods, 13(1), 38–49.

    Google Scholar 

  • Long, J. A., & Nelson, T. A. (2012). Time geography and wildlife home range delineation. Journal of Wildlife Management, 76(2), 407–413.

    Article  Google Scholar 

  • Lynch, T. B. (2017). Optimal sample size and plot size or point sampling factor based on cost-plus-loss using the Fairfield Smith relationship for plot size. Forestry, 90(5), 697–709.

    Article  Google Scholar 

  • Manly, B. F. J. (2004). Two-phase adaptive stratified sampling. In W. L. Thompson (Ed.), Sampling rare or elusive species: Concepts, designs, and techniques for estimating population parameters (pp. 123–133). Washington, D.C.: Island Press

    Google Scholar 

  • McDonald, L. L. (2004). Sampling rare populations. In W. L. Thompson (Ed.), Sampling rare or elusive species: Concepts, designs, and techniques for estimating population parameters (pp. 11–42). Washington, D.C.: Island Press.

    Google Scholar 

  • Murthy, M. N., & Rao, T. J. (1988). Systematic sampling with illustrative examples. In P. R. Krishnaiah & C. R. Rao (Eds.), Handbook of Statistics, Vol. 6, Sampling (pp. 147–185). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Naccarato, A., & Benassi, F. (2018). On the relationship between mean and variance of world’s human population density: A study using Taylor’s power law. Letters in Spatial and Resource Sciences, 11(3), 307–314.

    Article  Google Scholar 

  • Narayana Reddy, M., & Ramanatha Chetty, C. K. (1982). Effect of plot shape on variability in Smith’s variance law. Experimental Agriculture, 18(4), 333–338.

    Article  Google Scholar 

  • Oedekoven, C. S., King, R., Buckland, S. T., Mackenzie, M. L., Evans, K. O., & Burger, Jr., L.W. (2016). Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models. Computational Statistics and Data Analysis, 98, 79–90.

    Article  Google Scholar 

  • Palmer, M., Balle, S., March, D., Alos, J., & Linde, M. (2011). Size estimation of circular home range from fish mark- release-(single)-recapture data: Case study of a small labrid targeted by recreational fishing. Marine Ecology Progress Series, 430, 87–97.

    Article  Google Scholar 

  • Plhal, R., Kamler, J., & Homolka, M. (2014). Faecal pellet group counting as a promising method of wild boar population density estimation. Acta Theriologica, 59(4), 561–569.

    Article  Google Scholar 

  • Powell, R. A., & Mitchell, M. S. (2012). What is a home range? Journal of Mammalogy, 93(4), 948–958.

    Article  Google Scholar 

  • Prentius, W., & Anton Grafström, A. (2022). Two-phase adaptive cluster sampling with circular field plots. Environmetrics, 33(5), e2729.

    Article  Google Scholar 

  • Rosenstock, S. S., Anderson, D. R., Giesen, K. M., Leukering, T., & Carter, M. F. (2002). Landbird counting techniques: Current practices and an alternative. Auk, 119(1), 46–53.

    Article  Google Scholar 

  • Roux, F., Steyn, G., Hay, C., & Wagenaar, I. (2018). Movement patterns and home range size of tigerfish (Hydrocynus vittatus) in the Incomati River system, South Africa. Koedoe—African Protected Area Conservation and Science, 60(1), 1–13.

    Article  Google Scholar 

  • Royle, J. A., & Link, W. A. (2005). A general class of multinomial mixture models for anuran calling survey data. Ecology, 86(9), 2505–2512.

    Article  Google Scholar 

  • Schmid-Haas, P. (1969). Sichproben am waldrand. Mitteilungen/Schweizerische Anstalt für das Forstliche Versuchswesen, 45, 234–303.

    Google Scholar 

  • Seber, G. A. F. (1982). The estimation of animal abundance (2nd ed.). London: Griffin. Reprinted in paperback by the Blackburn press, Caldwell, N. J. (2002).

    Google Scholar 

  • Seber, G. A. F., & Salehi, M. M. (2013). Adaptive sampling designs: Inference for sparse and clustered populations. Berlin: Springer, SpringerBriefs in Statistics.

    Book  Google Scholar 

  • Smith, D. R., Brown J. A., & Lo, N. C. H. (2004). Application of adaptive sampling to biological populations. In W. L. Thompson (Ed.), Sampling rare or elusive species: Concepts, designs, and techniques for estimating population parameters (pp. 77–122). Island Press: Washington, D.C.

    Google Scholar 

  • Smith, H. F. (1938). An empirical law describing heterogeneity in the yields of agricultural crops. Journal of Agricultural Science, 28(01), 1–23.

    Article  Google Scholar 

  • Southwood, T. R. E. (1978). Ecological methods, with particular reference to the study of insect populations. The English Language Book Society and Chapman-Hall.

    Google Scholar 

  • Steiniger, S., & Hunter, A. J. S. (2012). A scaled line-based kernel density estimator for the retrieval of utilization distributions and home ranges from GPS movement tracks. Ecological Informatics, 13, 1–8.

    Article  Google Scholar 

  • Tanaka, U., Ogata, Y., & Stoyan, D. (2008). Parameter estimation and model selection for Neyman-Scott point processes. Biometrical Journal, 50(1), 43–57.

    Article  Google Scholar 

  • Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, 189(4766), 732–735.

    Article  Google Scholar 

  • Taylor, R. A. J. (2018). Spatial distribution, sampling efficiency and Taylor’s power law. Ecological Entomology, 43(2), 215–225.

    Article  Google Scholar 

  • Taylor, R. A. J. (2021). Spatial distribution, sampling efficiency and Taylor’s power law. 2. Interpreting density-dependent sampling efficiency. Agricultural and Forest Entomology, 23(2), 173–188.

    Article  Google Scholar 

  • Thompson, C. M., Royle, J. A., & Garner, J. D. (2012). A framework for inference about carnivore density from unstructured spatial sampling of scat using detector dogs. Journal of Wildlife Management, 76(4), 863–871.

    Article  Google Scholar 

  • Thompson, S. K. (1990). Adaptive cluster sampling. Journal of the American Statistical Association, 85, 1050–1059.

    Article  Google Scholar 

  • Thompson, S. K. (2012). Sampling (3rd ed.). Hoboken, New Jersey: Wiley.

    Book  Google Scholar 

  • Thompson, S. K., & Seber, G. A. F. (1996). Adaptive sampling. New York: Wiley.

    Google Scholar 

  • Thompson, W. L. (Ed.). (2004). Sampling rare or elusive species: Concepts, designs, and techniques for estimating population parameters. Washington, D. C.: Island Press.

    Google Scholar 

  • Tioli, S., Cagnacci, F., Stradiotto, A., Rizzoli, A., & Rizzoli, A. (2009). Edge effect on density estimates of a radiotracked population of yellow-necked mice. Journal of Wildlife Management, 73(2), 184–190.

    Article  Google Scholar 

  • Weir, L. A., & Mossman, M. J. (2005). North American Amphibian Monitoring Program (NAAMP). In M. J. Lannoo (Ed.), Amphibian declines: Conservation status of United States species (pp. 307–313). Berkeley: University of California Press.

    Chapter  Google Scholar 

  • Worton, B. J. (1995). Using Monte Carlo simulation to evaluate kernel-based home range estimators. Journal of Wildlife Management, 59(4), 794–800.

    Article  Google Scholar 

  • Yang, H., Magnussen, S., Fehrmann, L., Mundhenk, P., & Kleinn, C. (2016). Two neighborhood-free plot designs for adaptive sampling of forests. Environmental and Ecological Statistics, 23(2), 279–299.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seber, G.A.F., Schofield, M.R. (2023). Plot Sampling. In: Estimating Presence and Abundance of Closed Populations. Statistics for Biology and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-39834-6_2

Download citation

Publish with us

Policies and ethics

Navigation