Shape, Size, and Orientation Effects in Homogenized Composite Materials: A Case Study Based on Golden Vaterite

  • Chapter
  • First Online:
The Advancing World of Applied Electromagnetics
  • 159 Accesses

Abstract

Homogenization formalisms require the constitutive parameters of the component materials of a composite material, together with parameters that characterize the shapes, orientations, sizes, and distributions of the component particles. As an example, the homogenization of vaterite impregnated with gold nanoparticles was accomplished using the extended Maxwell Garnett formalism. The extended formalism takes into account the intrinsic anisotropy of vaterite as well as the size, shape, and orientation of the nanoparticles. Size-dependent permittivity was used for the gold nanoparticles. Numerical studies revealed that the homogenized composite material’s permittivity parameters are acutely sensitive to the size, shape, orientation, and volume fraction of the gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Lakhtakia (ed.), Selected Papers on Linear Optical Composite Materials (SPIE Optical Engineering Press, Bellingham, WA, USA, 1996)

    Google Scholar 

  2. T.G. Mackay, A. Lakhtakia, Modern Analytical Electromagnetic Homogenization with Mathematica\({ }^{\circledR }\) 2nd edn. (IOP Publishing, Bristol, UK, 2020)

    Google Scholar 

  3. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, NY, USA, 1981)

    Google Scholar 

  4. T.G. Mackay, Lewin’s homogenization formula revisited for nanocomposite materials. J. Nanophoton. 2 029503 (2008)

    Google Scholar 

  5. R.M. Walser, Metamaterials: an introduction, in Introduction to Complex Mediums for Optics and Electromagnetics, ed. by W.S. Weiglhofer, A. Lakhtakia (SPIE Press, Bellingham, WA, USA, 2003), pp. 295–316

    Google Scholar 

  6. T.G. Mackay, Linear and nonlinear homogenized composite mediums as metamaterials. Electromagnetics 25, 461–481 (2005)

    Google Scholar 

  7. T.G. Mackay, A. Lakhtakia, Plane wave with negative phase velocity in Faraday chiral mediums. Phys. Rev. E 69, 026602 (2004)

    Google Scholar 

  8. P.D. McAtee, A. Lakhtakia, Experimental detection of Immunoglobulin G by prism-coupled angular interrogation and a support vector machine. J. Nanophoton. 16, 016003 (2021)

    Google Scholar 

  9. M. Zourob, A. Lakhtakia (eds.), Optical Guided-wave Chemical and Biosensors I (Springer, Heidelberg, Germany, 2010)

    Google Scholar 

  10. M. Zourob, A. Lakhtakia (eds.), Optical Guided-wave Chemical and Biosensors II (Springer, Heidelberg, Germany, 2010)

    Google Scholar 

  11. T.G. Mackay, A. Lakhtakia, Modeling columnar thin films as platforms for surface-plasmonic-polaritonic optical sensing. Photon. Nanostruct. Fund. Appl. 8, 140–149 (2010)

    Google Scholar 

  12. T.G. Mackay, On the sensitivity of generic porous optical sensors. Appl. Opt. 51, 2752–2758 (2012)

    Google Scholar 

  13. P.D. McAtee, S.T.S. Bukkapatnam, A. Lakhtakia, Artificial neural network to estimate the refractive index of a liquid infiltrating a chiral sculptured thin film. J. Nanophoton. 13, 046006 (2019)

    Google Scholar 

  14. W.S. Weiglhofer, A. Lakhtakia, The correct constitutive relations of chiroplasmas and chiroferrites. Microwave Opt. Technol. Lett. 17, 405–408 (1998)

    Google Scholar 

  15. T.G. Mackay, A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy, 2nd edn. (World Scientific, Singapore, 2019)

    Google Scholar 

  16. C.-T. Tai, Generalized Vector and Dyadic Analysis: Applied Mathematics in Field Theory, Revised edn. (Oxford University Press, Oxford, UK, 1996)

    Google Scholar 

  17. A. Lakhtakia, W.S. Weiglhofer, Maxwell Garnett formalism for weakly nonlinear, bianisotropic, dilute, particulate composite media. Int. J. Electron. 87, 1401–1408 (2000)

    Google Scholar 

  18. M.G. Silveirinha, J.D. Baena, L. Jelinek, R. Marqués, Nonlocal homogenization of an array of cubic particles made of resonant rings. Metamaterials 3, 115–128 (2009)

    Google Scholar 

  19. T.G. Mackay, A. Lakhtakia, Dynamically controllable anisotropic metamaterials with simultaneous attenuation and amplification. Phys. Rev. A 92, 053847 (2015)

    Google Scholar 

  20. T.G. Mackay, A. Lakhtakia, Polarization-state-dependent attenuation and amplification in a columnar thin film. J. Opt. (Bristol) 19, 12LT01 (2017). Correction: 20, 109501 (2018)

    Google Scholar 

  21. M.T. Prinkey, A. Lakhtakia, B. Shanker, On the extended Maxwell–Garnett and the extended Bruggeman approaches for dielectric-in-dielectric composites. Optik 96, 25–30 (1994)

    Google Scholar 

  22. B. Shanker, A. Lakhtakia, Extended Maxwell Garnett formalism for composite adhesives for microwave-assisted adhesion of polymer surfaces. J. Compos. Mater. 27, 1203–1213 (1993)

    Google Scholar 

  23. T.G. Mackay, A. Lakhtakia, Correlation length facilitates Voigt wave propagation. Waves Random Media 14, L1–L11 (2004)

    Google Scholar 

  24. J.-B. Biot, F. Arago, Mémoire sur les affinités des corps pour la lumière, et particulièrement sur les forces réfringentes des différens gaz. Mém. Inst. France 7, 301–387 (1806)

    Google Scholar 

  25. J.C. Maxwell Garnett, Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. Lond. A 203, 385–420 (1904) (Reproduced in [1])

  26. H. Faxén, Der Zusammenhang zwischen den Maxwellschen Gleichungen für Dielektrika und den atomistischen Ansätzen von H.A. Lorentz u.a. Z. Phys. 2, 218–229 (1920) (Reproduced in [1])

  27. A. Lakhtakia, Cakes and pastries, and linear optical composite materials too, in Selected Papers on Linear Optical Composite Materials, ed. by A. Lakhtakia (SPIE Optical Engineering Press, Bellingham, WA, USA, 1996), pp. xiii–xxiv

    Google Scholar 

  28. W.S. Weiglhofer, A. Lakhtakia, B. Michel, Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium. Microwave Opt. Technol. Lett. 15, 263–266 (1997). Corrections: 22, 221 (1999)

    Google Scholar 

  29. Z. Hashin, S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)

    Google Scholar 

  30. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, UK, 1985)

    Google Scholar 

  31. A. Lakhtakia, Incremental Maxwell Garnett formalism for homogenizing particulate composite media. Microwave Opt. Technol. Lett. 17, 276–279 (1998)

    Google Scholar 

  32. B. Michel, A. Lakhtakia, W.S. Weiglhofer, T.G. Mackay, Incremental and differential Maxwell Garnett formalisms for bi-anisotropic composites. Compos. Sci. Technol. 61, 13–18 (2001)

    Google Scholar 

  33. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. Lpz. 24, 636–679 (1935) (Reproduced in [1])

  34. A.V. Goncharenko, E.F. Venger, Percolation threshold for Bruggeman composites. Phys. Rev. E 70, 057102 (2004)

    Google Scholar 

  35. T.G. Mackay, A. Lakhtakia, Percolation thresholds in the homogenization of spheroidal particles oriented in two directions. Opt. Commun. 259, 727–737 (2006)

    Google Scholar 

  36. D. Polder, J.H. van Santen, The effective permeability of mixtures of solids. Physica 12, 257–271 (1946)

    Google Scholar 

  37. C.F. Bohren, L.J. Battan, Radar backscattering by inhomogeneous precipitation particles. J. Atmos. Sci. 37, 1821–1827 (1980). Corrections: 38, 459 (1981)

    Google Scholar 

  38. C.J.F. Böttcher, The dielectric constant of crystalline powders. Rec. Trav. Chim. Pays–Bas 64, 47–51 (1945)

    Google Scholar 

  39. M.N. Lakhtakia, A. Lakhtakia, Anisotropic composite materials with intensity-dependent permittivity tensor: the Bruggeman approach. Electromagnetics 21, 129–138 (2001)

    Google Scholar 

  40. Yu.A. Ryzhov, V.V. Tamoikin, Radiation and propagation of electromagnetic waves in randomly inhomogeneous media. Radiophys, Quantum Electron. 14, 228–233 (1970)

    Google Scholar 

  41. V.I. Tatarskii, V.U. Zavorotnyi, Strong fluctuations in light propagation in a randomly inhomogeneous medium. Prog. Opt. 18, 204–256 (1980)

    Google Scholar 

  42. L. Tsang, J.A. Kong, Scattering of electromagnetic waves from random media with strong permittivity fluctuations. Radio Sci. 16, 303–320 (1981) (Reproduced in [1])

  43. Z.D. Genchev, Anisotropic and gyrotropic version of Polder and van Santen’s mixing formula. Waves Random Media 2, 99–110 (1992)

    Google Scholar 

  44. N.P. Zhuck, Strong-fluctuation theory for a mean electromagnetic field in a statistically homogeneous random medium with arbitrary anisotropy of electrical and statistical properties. Phys. Rev. B 50, 15636–15645 (1994)

    Google Scholar 

  45. B. Michel, A. Lakhtakia, Strong-property-fluctuation theory for homogenizing chiral particulate composites. Phys. Rev. E 51, 5701–5707 (1995)

    Google Scholar 

  46. T.G. Mackay, A. Lakhtakia, W.S. Weiglhofer, Strong-property-fluctuation theory for homogenization of bianisotropic composites: formulation. Phys. Rev. E 62, 6052–6064 (2000). Corrections: 63, 049901 (2001)

    Google Scholar 

  47. A. Lakhtakia, Application of strong permittivity fluctuation theory for isotropic, cubically nonlinear, composite mediums. Opt. Commun. 192, 145–151 (2001)

    Google Scholar 

  48. T.G. Mackay, Geometrically derived anisotropy in cubically nonlinear dielectric composites. J. Phys. D: Appl. Phys. 36, 583–591 (2003)

    Google Scholar 

  49. T.G. Mackay, A. Lakhtakia, W.S. Weiglhofer, The strong-property-fluctuation theory for cubically nonlinear, isotropic chiral composite mediums. Electromagnetics 23, 455–479 (2003)

    Google Scholar 

  50. T.G. Mackay, A. Lakhtakia, W.S. Weiglhofer, Third-order implementation and convergence of the strong-property-fluctuation theory in electromagnetic homogenisation. Phys. Rev. E 64, 066616 (2001)

    Google Scholar 

  51. D.E. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50, 704–709 (1982) (Reproduced in [1])

  52. T.G. Mackay, Depolarization volume and correlation length in the homogenization of anisotropic dielectric composites. Waves Random Media 14, 485–498 (2004). Corrections: Waves Random Complex Media 16, 85 (2006)

    Google Scholar 

  53. J. Cui, T.G. Mackay, Depolarization regions of nonzero volume in bianisotropic homogenized composites. Waves Random Complex Media 17, 269–281 (2007)

    MathSciNet  Google Scholar 

  54. J. Cui, T.G. Mackay, Depolarization regions of nonzero volume for anisotropic, cubically nonlinear, homogenized nanocomposites. J. Nanophoton. 1, 013506 (2007)

    Google Scholar 

  55. W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39, 9852–9858 (1989)

    Google Scholar 

  56. B. Shanker, A. Lakhtakia, Extended Maxwell Garnett model for chiral-in-chiral composites. J. Phys. D: Appl. Phys. 26, 1746–1758 (1993)

    Google Scholar 

  57. B. Shanker, The extended Bruggeman approach for chiral-in-chiral mixtures. J. Phys. D: Appl. Phys. 29, 281–288 (1996)

    Google Scholar 

  58. A. Lakhtakia, B. Shanker, Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell–Garnett model. Int. J. Appl. Electromagn. Mater. 4, 65–82 (1993) (Reproduced in [1])

  59. P. Mallet, C.A. Guérin, A. Sentenac, Maxwell–Garnett mixing rule in the presence of multiple–scattering: Derivation and accuracy. Phys. Rev. B 72, 014205 (2005)

    Google Scholar 

  60. C.F. Bohren, Do extended effective–medium formulas scale properly? J. Nanophoton. 3, 039501 (2009)

    Google Scholar 

  61. C. Rodriguez-Navarro, C. Jimenez-Lopez, A. Rodriguez-Navarro, M.T. Gonzalez-Muñoz, M. Rodriguez-Gallego, Bacterially mediated mineralization of vaterite. Geochimica et Cosmochimica Acta 71, 1197–1213 (2007)

    Google Scholar 

  62. B.C. Chakoumakos, B.M. Pracheil, R.S. Wood, A. Loeppky, G. Anderson, R. Koenigs, R. Bruch, Texture analysis of polycrystalline vaterite spherulites from Lake Sturgeon otoliths. Sci. Rep. 9, 7151 (2019)

    Google Scholar 

  63. S. Wu, C.-Y. Chiang, W. Zhou, Formation mechanism of CaCO\({ }_3\) spherulites in the myostracum layer of limpet shells. Crystals 7, 319 (2017)

    Google Scholar 

  64. J.D.H. Donnay, G. Donnay, Optical determination of water content in spherulitic vaterite. Acta Cryst. 22, 312–314 (1967)

    Google Scholar 

  65. A.M. Ferreira, A.S. Vikulina, D. Volodkina, CaCO\({ }_3\) crystals as versatile carriers for controlled delivery of antimicrobials. J. Controll. Release 328, 470–489 (2020)

    Google Scholar 

  66. A.R. Rastinehad, H. Anastos, E. Wajswol, J.S. Winoker, J.P. Sfakianos, S.K. Doppalapudi, M.R. Carrick, C.J. Knauer, B. Taouli, S.C. Lewis, A.K. Tewari, J.A. Schwartz, S.E. Canfield, A.K. George, J.L. West, N.J. Halas, Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA 119, 18590–18596 (2019)

    Google Scholar 

  67. A. Biswas, A.T. Nagaraja, M.J. McShane, Fabrication of nanocapsule carriers from multilayer-coated vaterite calcium carbonate nanoparticles. ACS Appl. Mater. Interfaces 6, 21193–21201 (2014)

    Google Scholar 

  68. R.E. Noskov, A. Machnev, I.I. Shishkin, M.V. Novoselova, A.V. Gayer, A.A. Ezhov, E.A. Shirshin, S.V. German, I.D. Rukhlenko, S. Fleming, B.N. Khlebtsov, D.A. Gorin, P. Ginzburg, Golden vaterite as a mesoscopic metamaterial for biophotonic applications. Adv. Mater. 33, 2008484 (2021)

    Google Scholar 

  69. T.G. Mackay, On extended homogenization formalisms for nanocomposites. J. Nanophoton. 2 021850 (2008)

    Google Scholar 

  70. B. Michel, A Fourier space approach to the pointwise singularity of an anisotropic dielectric medium. Int. J. Appl. Electromagn. Mech. 8, 219–227 (1997)

    Google Scholar 

  71. A. Derkachova, K. Kolwas, I. Demchenko, Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and dam** rates for nanospheres. Plasmonics 11, 941–951 (2016)

    Google Scholar 

  72. H. C. Chen, Theory of Electromagnetic Waves (McGraw–Hill, New York, NY, USA, 1983)

    Google Scholar 

  73. G. Strang, Introduction to Linear Algebra, 5th edn. (Wellesley, Cambridge, MA, USA, 2016)

    Google Scholar 

  74. A. Lakhtakia, P.D. Sunal, V.C. Venugopal, E. Ertekin, Homogenization and optical response properties of sculptured thin films. Proc. SPIE 3790, 77–83 (1999)

    Google Scholar 

  75. A. Lakhtakia, R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, Bellingham, WA, USA, 2005)

    Google Scholar 

  76. A. Lakhtakia, Size-dependent Maxwell–Garnett formula from an integral equation formalism. Optik 91, 131–133 (1992)

    Google Scholar 

  77. J.G. Fikioris, Electromagnetic field inside a current carrying region. J. Math. Phys. 6, 1617–1620 (1965)

    MathSciNet  Google Scholar 

  78. J.J.H. Wang, A unified and consistent view of the singularities of the electric dyadic Green’s function in the source region. IEEE Trans. Antenn. Propagat. 30, 463–468 (1982)

    MathSciNet  Google Scholar 

  79. Y.-W. Lu, L.-Y. Li, J.-F. Liu, Influence of surface roughness on strong light-matter interaction of a quantum emitter-metallic nanoparticle system. Sci. Rep. 8, 7115 (2018)

    Google Scholar 

  80. B. Michel, W.S. Weiglhofer, Pointwise singularity of dyadic Green function in a general bianisotropic medium. Arch. Elektron. Übertrag. 51, 219–223 (1997). Corrections: 52, 310 (1998)

    Google Scholar 

  81. W.S. Weiglhofer, Electromagnetic depolarization dyadics and elliptic integrals. J. Phys. A: Math. Gen. 31, 7191–7196 (1998)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by EPSRC (grant number EP/V046322/1) and US NSF (grant number DMS-2011996). AL thanks the Charles Godfrey Binder Endowment at The Pennsylvania State University for ongoing support of his research endeavors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom G. Mackay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mackay, T.G., Lakhtakia, A. (2024). Shape, Size, and Orientation Effects in Homogenized Composite Materials: A Case Study Based on Golden Vaterite. In: Lakhtakia, A., Furse, C.M., Mackay, T.G. (eds) The Advancing World of Applied Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-031-39824-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39824-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39823-0

  • Online ISBN: 978-3-031-39824-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation