Model-Agnostic Federated Learning

  • Conference paper
  • First Online:
Euro-Par 2023: Parallel Processing (Euro-Par 2023)

Abstract

Since its debut in 2016, Federated Learning (FL) has been tied to the inner workings of Deep Neural Networks (DNNs); this allowed its development as DNNs proliferated but neglected those scenarios in which using DNNs is not possible or advantageous. The fact that most current FL frameworks only support DNNs reinforces this problem. To address the lack of non-DNN-based FL solutions, we propose MAFL (Model-Agnostic Federated Learning). MAFL merges a model-agnostic FL algorithm, AdaBoost.F, with an open industry-grade FL framework: IntelĀ® OpenFL. MAFL is the first FL system not tied to any machine learning model, allowing exploration of FL beyond DNNs. We test MAFL from multiple points of view, assessing its correctness, flexibility, and scaling properties up to 64 nodes of an HPC cluster. We also show how we optimised OpenFL achieving a 5.5\(\times \) speedup over a standard FL scenario. MAFL is compatible with x86-64, ARM-v8, Power and RISC-V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 94.94
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/alpha-unito/Model-Agnostic-FL.

References

  1. Arfat, Y., Mittone, G., Colonnelli, I., Dā€™Ascenzo, F., Esposito, R., Aldinucci, M.: Pooling critical datasets with federated learning. In: IEEE PDP (2023)

    Google ScholarĀ 

  2. Bartolini, A., Ficarelli, F., Parisi, E., Beneventi, F., Barchi, F., Gregori, D., et al.: Monte cimone: paving the road for the first generation of risc-v high-performance computers. In: IEEE SOCC, pp. 1ā€“6 (2022)

    Google ScholarĀ 

  3. BeltrƔn, E.T.M., PƩrez, M.Q., SƔnchez, P.M.S., Bernal, S.L., Bovet, G., PƩrez, M.G., et al.: Decentralized federated learning: fundamentals, state-of-the-art, frameworks, trends, and challenges. ar**v preprint ar**v:2211.08413 (2022)

  4. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., de GusmĆ£o, P.P., et al.: Flower: a friendly federated learning research framework. ar**v preprint ar**v:2007.14390 (2020)

  5. Foley, P., Sheller, M.J., Edwards, B., Pati, S., Riviera, W., Sharma, M., et al.: OpenFL: the open federated learning library. Phys. Med. Biol. 67(21), 214001 (2022)

    ArticleĀ  Google ScholarĀ 

  6. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119ā€“139 (1997)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. He, C., Li, S., So, J., Zhang, M., Wang, H., Wang, X., et al.: FedML: a research library and benchmark for federated machine learning. ar**v preprint ar**v:2007.13518 (2020)

  8. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., MĆ¼ller, H.: Causability and explainability of artificial intelligence in medicine. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 9(4), 1312 (2019)

    Google ScholarĀ 

  9. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends Mach. Learn. 14(1ā€“2), 1ā€“210 (2021)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  10. Kleanthous, C., Chatzis, S.: Gated mixture variational autoencoders for value added tax audit case selection. Knowl. Based Syst. 188, 105048 (2020)

    ArticleĀ  Google ScholarĀ 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84ā€“90 (2017)

    ArticleĀ  Google ScholarĀ 

  12. Liu, Y., Fan, T., Chen, T., Xu, Q., Yang, Q.: Fate: an industrial grade platform for collaborative learning with data protection. J. Mach. Learn. Res. 22(1), 10320ā€“10325 (2021)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar, A., Rajamoni, S., et al.: IBM federated learning: an enterprise framework white paper v0. 1. ar**v preprint ar**v:2007.10987 (2020)

  14. Lyu, L., Yu, H., Ma, X., Chen, C., Sun, L., Zhao, J., et al.: Privacy and robustness in federated learning: attacks and defenses. IEEE Trans. Neural. Netw. Learn. Syst. 1ā€“21 (2022)

    Google ScholarĀ 

  15. McMahan, B., Moore, E., Ramage, D., Hampson, S., AgĆ¼era y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics AISTATS, vol. 54, pp. 1273ā€“1282. PMLR, Fort Lauderdale, FL, USA (2017)

    Google ScholarĀ 

  16. Meese, C., Chen, H., Asif, S.A., Li, W., Shen, C.C., Nejad, M.: BFRT: blockchained federated learning for real-time traffic flow prediction. In: IEEE CCGrid, pp. 317ā€“326 (2022)

    Google ScholarĀ 

  17. Oā€™Mahony, N., et al.: Deep learning vs. traditional computer vision. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 943, pp. 128ā€“144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17795-9_10

    ChapterĀ  Google ScholarĀ 

  18. Polato, M., Esposito, R., Aldinucci, M.: Boosting the federation: cross-silo federated learning without gradient descent. In: IEEE IJCNN), pp. 1ā€“10 (2022)

    Google ScholarĀ 

  19. Riviera, W., Menegaz, G., Boscolo Galazzo, I.: FeLebrities: a user-centric assessment of federated learning frameworks. TechRxiv (2022)

    Google ScholarĀ 

  20. Roth, H.R., Cheng, Y., Wen, Y., Yang, I., Xu, Z., Hsieh, Y.T., et al.: Nvidia flare: federated learning from simulation to real-world. ar**v preprint ar**v:2210.13291 (2022)

  21. Sotthiwat, E., Zhen, L., Li, Z., Zhang, C.: Partially encrypted multi-party computation for federated learning. In: IEEE CCGrid, pp. 828ā€“835 (2021)

    Google ScholarĀ 

  22. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NeurIPS, pp. 3104ā€“3112 (2014)

    Google ScholarĀ 

  23. Warnat-Herresthal, S., Schultze, H., Shastry, K.L., Manamohan, S., Mukherjee, S., Garg, V., et al.: Swarm learning for decentralized and confidential clinical machine learning. Nature 594(7862), 265ā€“270 (2021)

    ArticleĀ  Google ScholarĀ 

  24. Zhavoronkov, A., Ivanenkov, Y.A., Aliper, A., Veselov, M.S., Aladinskiy, V.A., Aladinskaya, A.V., et al.: Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37(9), 1038ā€“1040 (2019)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgments

This work has been supported by the Spoke ā€œFutureHPC & BigData" of the ICSC - Centro Nazionale di Ricerca in ā€œHigh Performance Computing, Big Data and Quantum Computing", funded by European Union - NextGenerationEU and the EuPilot project funded by EuroHPC JU under G.A. n. 101034126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Mittone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mittone, G., Riviera, W., Colonnelli, I., Birke, R., Aldinucci, M. (2023). Model-Agnostic Federated Learning. In: Cano, J., Dikaiakos, M.D., Papadopoulos, G.A., PericĆ s, M., Sakellariou, R. (eds) Euro-Par 2023: Parallel Processing. Euro-Par 2023. Lecture Notes in Computer Science, vol 14100. Springer, Cham. https://doi.org/10.1007/978-3-031-39698-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39698-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39697-7

  • Online ISBN: 978-3-031-39698-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation