A Strategy of Optimal Sensor Placement for Dynamic Identification in Cultural Heritage

  • Conference paper
  • First Online:
Structural Analysis of Historical Constructions (SAHC 2023)

Part of the book series: RILEM Bookseries ((RILEM,volume 47))

  • 830 Accesses

Abstract

The present study describes an approach to boost the cost-effectiveness of the Operational Modal Analysis (OMA) application to historic buildings, through the optimisation of the trade-off between the number of required sensors and the quality of the information provided by them. Such an approach, currently under development and testing, considers a limited level of knowledge and relies on extensive simulations to assess the effect of the sources of uncertainties on the dynamic behaviour of the structure. In particular, the work focuses on a specific building typology, namely the noble palace overlooking Canal Grande in Venice, dating back to Gothic period. To this end, a prototype is defined based on the most relevant typological and morphological features of this typology, and its Finite Element (FE) model is generated. A Monte Carlo simulation technique is employed to sample several different instances from pre-set probabilistic functions for each stochastic variable. An Optimal Sensor Placement (OSP) algorithm is used to rank different recommended locations for a reduced number of sensors under these parameters’ variation, producing an optimal overall topology for the network. These considerations open future developments in view of a possible protocol applied to this historical building typology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russo, S.: On the monitoring of historic Anime Sante church damaged by earthquake in L’Aquila: monitoring of historic church damaged by earthquake. Struct. Control Health Monit. 20(9), 1226–1239 (2013). https://doi.org/10.1002/stc.1531

    Article  Google Scholar 

  2. Ceravolo, R., Pistone, G., Fragonara, L.Z., Massetto, S., Abbiati, G.: Vibration-based monitoring and diagnosis of cultural heritage: a methodological discussion in three examples. Int. J. Architectural Heritage 10(4), 375–395 (2016). https://doi.org/10.1080/15583058.2013.850554

    Article  Google Scholar 

  3. Lourenço, P. B., Barontini, A., Oliveira, D.V., Ortega, J.: Rethinking preventive conservation: recent examples. In: Geotechnical Engineering for the Preservation of Monuments and Historic Sites III, 1st ed., London: CRC Press, pp. 70–86 (2022). https://doi.org/10.1201/9781003329756-4

  4. Ceravolo, R., de Lucia, G., Lenticchia, E., Miraglia, G.: Seismic Structural Health Monitoring of Cultural Heritage Structures. In: Limongelli, M., Çelebi, M. (eds) Seismic Structural Health Monitoring. Springer Tracts in Civil Engineering . Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13976-6_3

  5. Miraglia, G., Lenticchia, E., Ceravolo, R., Betti, R.: Synergistic and combinatorial optimization of finite element models for monitored buildings. Struct Control Health Monit. 26(9), e2403 (2019). https://doi.org/10.1002/stc.2403

  6. Ceravolo, R., Lucia, G.D., Pecorelli, M.L.: Issues on the modal characterization of large monumental structures with complex dynamic interactions. Procedia Eng. 199, 3344–3349 (2017). https://doi.org/10.1016/j.proeng.2017.09.552

    Article  Google Scholar 

  7. Imposa, G., et al.: Extended tromograph surveys for a full experimental characterisation of the San Giorgio Cathedral in Ragusa (Italy). Sensors 23(2), 889 (2023). https://doi.org/10.3390/s23020889

    Article  Google Scholar 

  8. Imposa, G., Barontini, A., Russo, S., Lourenço, P.B.: First hypothesis for optimized monitoring strategy through ambient vibrations in historic buildings. Procedia Struct. Integrity 44, 1608–1615 (2023). https://doi.org/10.1016/j.prostr.2023.01.206

    Article  Google Scholar 

  9. Castro-Triguero, R., Murugan, S., Gallego, R., Friswell, M.I.: Robustness of optimal sensor placement under parametric uncertainty. Mech. Syst. Signal Process. 41(1–2), 268–287 (2013). https://doi.org/10.1016/j.ymssp.2013.06.022

    Article  Google Scholar 

  10. Ortega, J., Vasconcelos, G., Rodrigues, H., Correia, M., Da Silva Miranda, T. F.: Development of a Numerical Tool for the Seismic Vulnerability Assessment of Vernacular Architecture. J. Earthq. Eng. 25(14), 2926–2954 (2021). https://doi.org/10.1080/13632469.2019.1657987

  11. Ortega, J., Saloustros, S., Roca, P.: ‘Seismic vulnerability assessment method for vernacular architecture considering uncertainty’

    Google Scholar 

  12. Pachón, P., et al.: Evaluation of optimal sensor placement algorithms for the Structural Health Monitoring of architectural heritage. Application to the Monastery of San Jerónimo de Buenavista (Seville, Spain). Eng. Struct. 202, 109843 (2020). https://doi.org/10.1016/j.engstruct.2019.109843

    Article  Google Scholar 

  13. Russo, S.: Integrated assessment of monumental structures through ambient vibrations and ND tests: the case of Rialto Bridge. J. Cult. Herit. 19, 402–414 (2016). https://doi.org/10.1016/j.culher.2016.01.008

    Article  Google Scholar 

  14. Barontini, A., Masciotta, M.-G., Ramos, L.F., Amado-Mendes, P., Lourenço, P.B.: An overview on nature-inspired optimization algorithms for structural health monitoring of historical buildings. Procedia Eng. 199, 3320–3325 (2017). https://doi.org/10.1016/j.proeng.2017.09.439

    Article  Google Scholar 

  15. Ostachowicz, W., Soman, R., Malinowski, P.: Optimization of sensor placement for structural health monitoring: a review. Struct. Health Monit. 18(3), 963–988 (2019). https://doi.org/10.1177/1475921719825601

    Article  Google Scholar 

  16. Kammer, D.C., Tinker, M.L.: Optimal placement of triaxial accelerometers for modal vibration tests. Mech. Syst. Signal Process. 18(1), 29–41 (2004). https://doi.org/10.1016/S0888-3270(03)00017-7

    Article  Google Scholar 

  17. Kammer, D.C., Yao, L.: Enhancement of on-orbit modal identification of large space structures through sensor placement. J. Sound Vib. 171(1), 119–139 (1994). https://doi.org/10.1006/jsvi.1994.1107

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Imposa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imposa, G., Barontini, A., Lourenco, P.B., Russo, S. (2024). A Strategy of Optimal Sensor Placement for Dynamic Identification in Cultural Heritage. In: Endo, Y., Hanazato, T. (eds) Structural Analysis of Historical Constructions. SAHC 2023. RILEM Bookseries, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-39603-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39603-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39602-1

  • Online ISBN: 978-3-031-39603-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation