The Future of Graphene Oxide-Based Nanomaterials and Their Potential Environmental Applications: A Contemporary View

  • Chapter
  • First Online:
Multifunctional Hybrid Semiconductor Photocatalyst Nanomaterials

Abstract

Environmental safety is vital to life on Earth. Environment and life are interconnected like two sides of a coin. Pollution is a serious challenge in both develo** and developed nations. Rapid rise in human civilization, together with metrological works and industrialization, affects the environment. Due to the excessive release of heavy metal ions, air, water, and soil-borne diseases as corona, cholera, cardiovascular issues, chronic conditions, and cancer increase. Different research organizations use several ways to combat environmental problems. Nanotechnology-based solutions are cost-effective and efficient. Nanomaterials’ multifaceted applications revolutionize science. Its particle-to-size ratio gives a wide surface area with several reactive sites. Carbon-based nanomaterials like graphene, fullerene, carbon nanotubes, graphene oxide, carbon-based quantum dots, etc., have received a lot of attention due to their application to combat environmental issues. Through this chapter, we want to draw researchers’ and academics’ attention to recent trends and applications of graphene oxide based photocatalysts in degradation of organic dye pollutants, biomedical significance, challenges, and future perspectives which will improve the development and application of more multidimensional nanomaterials to human health and for the development of biodiagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag/AgCl:

Silver /Silver chloride

As:

Arsenic

AmGO:

Amino functionalized graphene oxide

BET:

Brunauer, Emmett and Teller

BMIMCIIL:

1- butyl 3- methyl imidazolium chloride

CGA:

Cellulose-graphene oxide composite aerogel

CGO:

Aerogels of cellulose and graphene oxide

CS:

Chitosan

CM:

Ceramic membrane

CMC:

Carboxymethyl cellulose

CRZ:

Carbendazim

CV:

Cyclic voltametric

DCC:

N, N\(^{\prime}\)-dicyclohexylcarbodiimide

DLVO:

Derjaguin–Landau–Verwey–Overbeek (DLVO) theory

FSC:

Furniture scraps charcoal

FTIR:

Fourier Transform Infrared

EDX:

Energy-dispersive X-ray spectra

GGO:

Gd2O3-doped graphene oxide

GO:

Graphene oxides

GO/LDH(GL):

Graphene oxide/layered double hydroxides composites

GO/GCE:

Graphene oxide (GO)-based glassy carbon electrode

GO-coumarin (GC):

Graphene oxide (GO)–coumarin (GC)

GO-SiO2:

Silica–graphene oxide nanocomposite

HGAAS:

Hydride generation atomic absorption spectroscopy

hrGO:

Hydrothermal reduction graphene oxide

hrGO-Trp:

Tryptophan cross-linked hrGO membranes

IL:

Ionic liquid

LDH:

Layered double hydroxides

LOD VALUE:

Limit of detection

M/GO:

Graphene oxide based magnetic nanocomposite

MB:

Methylene blue

MG:

Malachite green

MGO:

Magnetic graphene oxide

mGO:

Multilayer graphene oxide

MO:

Methyl orange

PPD:

p-Phenylenediamine

PPy:

Polypyrrole

PVC:

Poly vinyl chloride

PS:

Polystyrene

RB:

Rose Bengal

rGO:

Reduced graphene oxide

Rh6G:

Rhodamine 6G

SEM:

Scanning electron microscopy

SWV:

Square wave voltammetry

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

T-GO-C:

Thymine-GO-Carbohydrazide

TSC:

Thiosemicarbazide

UV-Vis:

Ultraviolet-visible

XRD:

X-ray diffractometer

Zr-MnO2-RGO:

Zirconium (Zr) decorated with manganese dioxide (MnO2) nanoparticles-functionalized reduced graphene oxide (RGO)

References

  1. Kodavanti, P.R.: Neurotoxicity of persistent organic pollutants: possible mode(s) of action and further considerations. Dose-Response 3 (2005). https://doi.org/10.2203/dose-response.003.03.002

  2. Michael-Kordatou, I., Michael, C., Duan, X., He, X., Dionysiou, D.D., Mills, M.A., Fatta-Kassinos, D.: Dissolved effluent organic matter: characteristics and potential implications in wastewater treatment and reuse applications. Water Res. 77, 213–248 (2015). https://doi.org/10.1016/j.watres.2015.03.011

    Article  Google Scholar 

  3. Fernández, C., Larrechi, M.S., Callao, M.P.: An analytical overview of processes for removing organic dyes from wastewater effluents. TrAC—Trends Anal. Chem. 29 (2010). https://doi.org/10.1016/J.TRAC.2010.07.011

  4. Z. Carmen, S.D.: Organic pollutants ten years after the stockholm convention—environmental and analytical update 55–86 (2012). InTech. https://doi.org/10.5772/32373

  5. Hicks, J.N.: Pollutants in our water: effects on human health and the environment. Otolaryngol. Head. Neck Surg. 119, 502–505 (1998). https://doi.org/10.1016/s0194-5998(98)70109-3

    Article  Google Scholar 

  6. Graca, M.S.: Pollutants in our water: effects on human health and the environment. Limnetica 10, 41–43 (1998). https://doi.org/10.1016/S0194-5998(98)70109-3

    Article  Google Scholar 

  7. Khan, M.A.N., Siddique, M., Wahid, F., Khan, R.: Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrason. Sonochem. 26 (2015). https://doi.org/10.1016/J.ULTSONCH.2015.04.012

  8. Pal, K., Chakroborty, S., Panda, P., Nath, N., Soren, S.: Environmental assessment of wastewater management via hybrid nanocomposite matrix implications—an organized review. Environ. Sci. Pollut. Res. 29, 76626–76643 (2022). https://doi.org/10.1007/s11356-022-23122-5

  9. Panda, P., Chakroborty, S.: Optical sensor technology and its application in detecting environmental effluents: a review. J. Environ. Anal. Chem. (2022). https://doi.org/10.1080/03067319.2022.2098480

  10. Nawaz, M., Ahsan, M.: Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria Eng. J. 53 (2014). https://doi.org/10.1016/J.AEJ.2014.06.007

  11. Forgács, E., Cserháti, T., Oros, G.: Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30 (2004). https://doi.org/10.1016/J.ENVINT.2004.02.001

  12. Singh, K., Arora, S.: Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol. 41 (2011). https://doi.org/10.1080/10643380903218376

  13. Vandevivere, P.C., Bianchi, R., Verstraete, W.: Review: treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol. 72, 289–302 (1998). https://doi.org/10.1002/(SICI)1097-4660(199808)72

    Article  Google Scholar 

  14. S. Chakroborty, S., Panda, P.: Nanovaccinology against infectious disease. In: Nanovaccinology as targeted therapeutics, pp. 95–113. John Wiley & sons, inc. (2022). https://doi.org/10.1002/9781119858041.ch5

  15. Panda, P., Barik, A., Unnamatla, M.V., Chakroborty, S.: Synthesis and antimicrobial abilities of metal oxide nanoparticles. In: Bio-manufactured Nanomaterials, pp. 41–58. Springer (2021). https://doi.org/10.1007/978-3-030-67223-2_3

  16. Guerra, F.D., Attia, M.F., Whitehead, D.C., Alexis, F.: Nanotechnology for environmental remediation: materials and applications. Molecules 23, 1760–1783 (2018). https://doi.org/10.3390/molecules23071760

    Article  Google Scholar 

  17. Del Prado-Audelo, M.L., Kerdan, I.G., Escutia-Guadarrama, L., Reyna-González, J.M., Magaña, J.J., Leyva-Gómez, G.: Nanoremediation: nanomaterials and nanotechnologies for environmental cleanup. Front. Environ. Sci. 793765 (2021). https://doi.org/10.3389/fenvs.2021.793765

  18. Khin, M.M., Nair, A.S., Babu, V.J., Murugana, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 8, 8075–8109 (2012). https://doi.org/10.1039/C2EE21818F

    Article  Google Scholar 

  19. Ningthoujam, R., Singh, Y.D., Babu, P.J., Tirkey, A., Pradhan, S., Sarmae, M.: Nanocatalyst in remediating environmental pollutants. Chem. Phys. 4, 100064 (2022). https://doi.org/10.1016/j.chphi.2022.100064

    Article  Google Scholar 

  20. Durgalakshmi, D., Rajendran, S., Naushad, M.: Current role of nanomaterials in environmental remediation. In: Naushad, M., Rajendran, S., Gracia, F. (eds.) Advanced Nanostructured Materials for Environmental Remediation. Environmental Chemistry for a Sustainable World, vol. 25, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04477-0_1

  21. Lim, J.Y., Mubarak, N.M., Abdullah, E.C., Nizamuddin, S., Khalid, M., Inamuddin.: Recent trends in the synthesis of graphene and graphene oxide-based nanomaterials for removal of heavy metals—A review. J. Ind. Eng. Chem., 66, 29–44 (2018). https://doi.org/10.1016/j.jiec.2018.05.028

  22. Perreault, F., de Faria, A.f., Elimelech, M.: Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861–5896 (2015). https://doi.org/10.1039/C5CS00021A

  23. Dayana Priyadharshini, S., Manikandan, S., Kiruthiga, R., Rednam, U., Babu, P.J., Subbaiya, R., Karmegam, N., Kim, W., Govarthanan, M.: Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: recent trends and perspectives—A review. Environ. Pollut. 306, 119377 (2022). https://doi.org/10.1016/j.envpol.2022.119377

    Article  Google Scholar 

  24. Lü, M.J., Li, J., Yang, X.Y., Zhang, C.A., Yang, J., Hu, H., Wang, X.B: Applications of graphene-based materials in environmental protection and detection. Chin. Sci. Bullet 58, 2698–2710 (2013). https://doi.org/10.1007/s11434-013-5887-y

  25. Li, F., Jiang, X., Zhao, J., Zhang, S.: Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16, 488–515 (2015). https://doi.org/10.1016/j.nanoen.2015.07.014

    Article  Google Scholar 

  26. Shen, Y., Fang, Q., Chen, B.: Environmental applications of three-dimensional graphene-sased macrostructures: adsorption, transformation, and detection. Environ. Sci. Technol. 49, 67–84 (2015). https://doi.org/10.1021/es504421y

    Article  ADS  Google Scholar 

  27. Karthik, V., Selvakumar, P., Senthil Kumar, P., Dai-Viet Vo, N., Gokulakrishnan, M., Keerthana, P., Tamil, V.T., Rajeswari, R.: Graphene-based materials for environmental applications: a review. Environ. Chem. Lett. 19, 3631–3644 (2021). https://doi.org/10.1007/s10311-021-01262-3

    Article  Google Scholar 

  28. Peng, C., Kuai, Z., Lian, S., Li, X., Jiang, D., Yang, J., Chen, S., Li, L.: Reversible photoregulation of morphological structure for porous coumarin-graphene composite and the removal of heavy metal ions. Appl. Surf. Sci. 546, 149065 (2021). https://doi.org/10.1016/j.apsusc.2021.149065

    Article  Google Scholar 

  29. Khan, Z.U., Khan, W.U., Ullah, B., Ali, W., Ahmad, B., Ali, W., Yap, P.S.: Graphene oxide/PVC composite papers functionalized with p-Phenylenediamine as high-performance sorbent for the removal of heavy metal ions. J. Environ. Chem. Eng. 9, 105916 (2021). https://doi.org/10.1016/j.jece.2021.105916

    Article  Google Scholar 

  30. Abaszadeh, M., Hosseinzadeh, R., Tajbakhsh, M., Ghasemi, S.: The synthesis of functionalized magnetic graphene oxide with -amino-1,10-phenanthroline and investigation of its dual application in C-N coupling reactions and adsorption of heavy metal ions. J. Mol. Struct. 1261, 132832 (2022). https://doi.org/10.1016/j.molstruc.2022.132832

  31. Lee, S., Lingamdinne, L.P., Yang, J.K., Koduru, J.R., Chang, Y.Y., Naushad, M.: Biopolymer mixture-entrapped modified graphene oxide for sustainable treatment of heavy metal contaminated real surface water. J. Water Process Eng. 46, 10263 (2022). https://doi.org/10.1016/j.jwpe.2022.102631

  32. Lee, S., Lingamdinne, L.P., Yang, J.K., Chang, Y.Y., Koduru, J.R.: Potential electromagnetic column treatment of heavy metal contaminated water using porous Gd2O3-doped graphene oxide nanocomposite: characterization and surface interaction mechanisms. J. Water Process Eng. 41, 102083 (2021). https://doi.org/10.1016/j.jwpe.2021.102083

  33. Barik, B., Kumar, A., Nayak, P.S.L., Achary, L.S.K., Rout, L., Dash, P.: Ionic liquid assisted mesoporous silica-graphene oxide nanocomposite synthesis and its application for removal of heavy metal ions from water. Mater. Chem. Phys. 239, 122028 (2020). https://doi.org/10.1016/j.matchemphys.2019.122028

    Article  Google Scholar 

  34. Abubshait, H.A., Farag, A.A., El-Raouf, M.A., Negm, N.A., Mohamed, E.A.: Graphene oxide modified thiosemicarbazidenano composite as an effective eliminator for heavy metal ions. J. Mol. Liq. 327, 114790 (2021). https://doi.org/10.1016/j.molliq.2020.114790

    Article  Google Scholar 

  35. Li, J., Huang, Q., Yu, H., Yan, L.: Enhanced removal performance and mechanistic study of Cu2+, Cd2+, and Pb2+ by magnetic layered double hydroxide nanosheets assembled on graphene oxide. J. Water Process Eng. 48, 102893 (2022). https://doi.org/10.1016/j.jwpe.2022.102893

    Article  Google Scholar 

  36. Li, Y., Dong, X., Zhao, L.: Application of magnetic chitosan nanocomposites modified by grapheme oxide and polyethyleneimine for removal of toxic heavy metals and dyes from water. Int. J. Biol. Macromol. 192, 118–125 (2021). https://doi.org/10.1016/j.ijbiomac.2021.09.202

    Article  Google Scholar 

  37. Sadeghi, M.H., Tofighy, M.A., Mohammadi, T.: One-dimensional graphene for efficient aqueous heavy metal adsorption: rapid removal of arsenic and mercury ions by grapheme oxide nanoribbons (GONRs). Chemosphere 253, 126647 (2020). https://doi.org/10.1016/j.chemosphere.2020.126647

    Article  ADS  Google Scholar 

  38. de Araujo, C.M.B., Wernke, G., Ghislandi, M.G., DiĂłrio, A., Vieira, M.F., Bergamasco, R., Sobrinho, M.A.M., Rodrigues, A.E.: Continuous removal of pharmaceutical drug chloroquine and Safranin-O dye from water using agar-graphene oxide hydrogel: Selective adsorption in batch and fixed-bed experiments. Environ. Res. 216, 114425 (2023). https://doi.org/10.1016/j.envres.2022.114425

    Article  Google Scholar 

  39. Yakouta, A.A., Khan, Z.A., Z.U.: High performance Zr-MnO2@reduced graphene oxide nanocomposite for efficient and simultaneous remediation of arsenates As(V) from environmental water samples. J. Mol. Liquids 334, 116427 (2021). https://doi.org/10.1016/j.molliq.2021.116427

  40. Joshi, P., Sharma, O.P., Ganguly, S.K., Srivastava, M., Khatri, O.P: Fruit waste-derived cellulose and graphene-based aerogels: plausible adsorption pathways for fast and efficient removal of organic dyes. J. Colloid Inter Sci. 608, 2870–2883 (2022). https://doi.org/10.1016/j.jcis.2021.11.016

  41. Ilager, D., Malode, S.J., Shetti, N.P.: Development of 2D graphene oxide sheets-based voltammetric sensor for electrochemical sensing of fungicide, carbendazim. Chemosphere 303, 134919 (2022). https://doi.org/10.1016/j.chemosphere.2022.134919

    Article  ADS  Google Scholar 

  42. Lee, T.W., Tsai, I.C., Liu, Y.F., Chen, C.: Upcycling fruit peel waste into a green reductant to reduce graphene oxide for fabricating an electrochemical sensing platform for sulfamethoxazole determination in aquatic environments. Sci. Total Environ. 812, 152273 (2022). https://doi.org/10.1016/j.scitotenv.2021.152273

    Article  ADS  Google Scholar 

  43. Farooq, N., Khan, M.I., Shanableh, A., Qureshi, A.M., Jabeen, S., Rehman, A.: Synthesis and characterization of clay graphene oxide iron oxide (clay/GO/Fe2O3)-nanocomposite for adsorptive removal of methylene blue dye from wastewater. Inorg. Chem. Commun. 145, 109956 (2022). https://doi.org/10.1016/j.inoche.2022.109956

    Article  Google Scholar 

  44. de Farias, L.M.S., Ghislandi, M.G., de Aguiar, M.F., Silva, D.B.R.S., Leal, A.N.R., Silva, F.A.O., Fraga, T.J.M., Melo, C.P., Alves, K.G.B.: Electrospun polystyrene/graphene oxide fibers applied to the remediation of dye wastewater. Mater. Chem. Phys. 276, 125356 (2022). https://doi.org/10.1016/j.matchemphys.2021.125356

    Article  Google Scholar 

  45. Fraga, T.J.M., Silva, M.P., Freire, E.M.P.L., Almeida, L.C., Sobrinho, M.A.M., Ghislandi, M.G., Carvalhom.N.: Amino-functionalized graphene oxide supported in charcoal from the gasification of furniture scraps: From one-pot synthesis to wastewater remediation. Chem. Eng. Res. Des. 180, 109–122 (2022). https://doi.org/10.1016/j.cherd.2022.02.006

  46. Dubey, A., Bhavsar, N., Pachchigar, V., Saini, M., Ranjan, M., Dube, C.L.: Microwave assisted ultrafast synthesis of graphene oxide based magnetic nano composite for environmental remediation. Ceram. Int. 48, 4821–4828 (2022). https://doi.org/10.1016/j.ceramint.2021.11.018

    Article  Google Scholar 

  47. Li, J., Wang, S., Yang, J., Li, L., Liang, S., Chen, L.: Bio-inspired graphene oxide-amino acid cross-linked framework membrane trigger high water permeance and high metal ions rejection. J. Membr. Sci. 659, 120745 (2022). https://doi.org/10.1016/j.memsci.2022.120745

    Article  Google Scholar 

  48. Wang, R., You, H., Zhang, Y., Li, Z., Ding, Y., Qin, Q., Wang, H., Sun, J., Jia, Y., Liu, F., Ma, J., Cheng, X.: Constructing (reduced) graphene oxide enhanced polypyrrole/ceramic composite membranes for water remediation. J. Membr. Sci. 659, 1208155 (2022). https://doi.org/10.1016/j.memsci.2022.120815

    Article  Google Scholar 

  49. Jayaraman, N., Palani, Y., Jonnalagadda, R.R., Shanmugam.: Covalently dual functionalized graphene oxide-based multiplex electrochemical sensor for Hg (II) and Cr (VI) detection. Sens. Actuators B: Chem. 367, 132165 (2022). https://doi.org/10.1016/j.snb.2022.132165

Download references

Acknowledgements

PP is thankful to the Department of Chemistry, RIE, Bhubaneswar, Odisha, India. SC is grateful to the Department of Basic Sciences, IES University, Bhopal, Madhya Pradesh, India. KSBN would like to acknowledge Research fellowship from Durban University of Technology, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Babu Naidu Krishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakroborty, S., Panda, P., Krishna, S.B.N. (2023). The Future of Graphene Oxide-Based Nanomaterials and Their Potential Environmental Applications: A Contemporary View. In: Prakash, J., Cho, J., Campos Janegitz, B., Sun, S. (eds) Multifunctional Hybrid Semiconductor Photocatalyst Nanomaterials. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-39481-2_7

Download citation

Publish with us

Policies and ethics

Navigation