Life Cycle Considerations for Per- And Polyfluoroalkyl Substances (PFASs) and the Evolution of Society’s Perspective on Their Usage

  • Chapter
  • First Online:
Emerging Materials and Environment

Abstract

Per- and polyfluoroalkyl substances (PFASs) are an expansive class of highly-fluorinated anthropogenic organic compounds that were developed for demanding speciality uses. Exceptional chemical properties led them to be incorporated in consumer products, industrial products, and industrial processes. Their extensive production and widespread application ultimately led to environmental release. Certain members of these compounds were found to be ubiquitous throughout the environment and in biota, having been transported to even the most remote locations. Findings of negative health outcomes associated with the biological occurrence of two particular PFASs (perfluorooctanesulfonic acid, or PFOS, and perfluorooctanoic acid) spurred a legislative movement to cope with the potential hazards of PFAS usage. Meanwhile, the scientific community embarked on a diverse research effort to understand PFAS life cycle considerations including production levels and utilization, environmental release and occurrence, environmental transformation, biological exposure and occurrence, and epidemiology. Furthermore, significant efforts are underway to understand how PFAS release can be prevented, and how to remediate contaminated matrices. Many of the properties making PFASs useful cause unique challenges for their ongoing management. An equilibrium has yet to be fully established between the clear utility provided by using PFASs and the associated risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banks RE, Smart BE, Tatlow JC (eds) (1994) Organofluorlne chemistry principles and commercial applications. Springer Science + Busniess Media, New York. 9781489912046

    Google Scholar 

  2. Barry V, Winquist A, Steenland K (2013) Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect 121 (11–12):1313–1318. ISSN 00916765. https://doi.org/10.1289/ehp.1306615

  3. Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, McCrindle R, Ferguson PL, Higgins CP, Field JA (2017) Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol 51(4): 2047–2057. ISSN 15205851. https://doi.org/10.1021/acs.est.6b05843

  4. Belisle J (1981) Organic fluorine in human serum: natural versus industrial sources. Science, 212(4502):1509–1510. ISSN 00368075. https://doi.org/10.1126/science.7233236

  5. Belisle J, Hagen DF (1980) A method for the determination of perfluorooctanoic acid in blood and other biological samples. Anal Biochem 101(2):369–376. ISSN 10960309. https://doi.org/10.1016/0003-2697(80)90202-X

  6. Bruton TA, Sedlak DL (2017) Treatment of aqueous film-forming foam by heat-activated persulfate under conditions representative of in situ chemical oxidation. Environ Sci Technol 51(23):13878–13885. ISSN 15205851. https://doi.org/10.1021/acs.est.7b03969

  7. Bruton TA, Sedlak DL (2018) Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere, 206:457–464. ISSN 00456535. https://doi.org/10.1016/j.chemosphere.2018.04.128, https://doi.org/10.1016/j.chemosphere.2018.04.128%0A, http://linkinghub.elsevier.com/retrieve/pii/S004565351830777X

  8. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, Voogt PD, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated Environ Assess Manage 7(4):513–541. ISSN 15513793. https://doi.org/10.1002/ieam.258

  9. Cates EL (2017) Photocatalytic water treatment: so where are we going with this? Environ Scie Technol 51(2):757–758. ISSN 15205851. https://doi.org/10.1021/acs.est.6b06035

  10. Cheng J, Psillakis E, Hoffmann MR, Colussi AJ (2009) Acid dissociation versus molecular association of perfluoroalkyl oxoacids: environmental implications. J Phys Chem A 113(29):8152–8156. ISSN 10895639. https://doi.org/10.1021/jp9051352

  11. Conder JM, Hoke RA, Wolf WD, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42(4): 995–1003. ISSN 0013936X. https://doi.org/10.1021/es070895g

  12. Cormanich RA, O’Hagan D, Bühl M (2017) Hyperconjugation is the source of helicity in perfluorinated n-Alkanes. Angewandte Chemie—Int Edition, 56(27):7867–7870. ISSN 15213773. https://doi.org/10.1002/anie.201704112

  13. Coyle C, Ghosh R, Leeson A, Thompson T (2020) US department of defense-funded research on treatment of per- and polyfluoroalkyl substance-laden materials. Environ Toxicol Chem 1–13. ISSN 15528618. https://doi.org/10.1002/etc.4836

  14. Darrow LA, Stein CR, Steenland K (2013) Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005–2010. Environ Health Perspect 121(10):1207–1213. ISSN 00916765. https://doi.org/10.1289/ehp.1206372

  15. Ding G, Peijnenburg WJGM (2013) Physicochemical properties and aquatic toxicity of poly- and perfluorinated compounds. Critical Rev Environ Sci Technol 43(6):598–678. ISSN 15476537. https://doi.org/10.1080/10643389.2011.627016

  16. Dombrowski PM, Kakarla P, Caldicott W, Chin Y, Sadeghi V, Bogdan D, Barajas-Rodriguez F, Chiang SYD (2018) Technology review and evaluation of different chemical oxidation conditions on treatability of PFAS. Remediation, 28(2):135–150. ISSN 15206831. https://doi.org/10.1002/rem.21555

  17. Du Z, Deng S, Bei Y, Huang Q, Wang B, Huang J, Yu G (2014) Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents-a review. J Hazardous Mater 274:443–454. ISSN 18733336. https://doi.org/10.1016/j.jhazmat.2014.04.038

  18. Erik K (2001) Fluorinated surfactants and repellents: second edition, 2nd edn. Revised and Expanded. Marcell Dekker, New York, NY. 08247-0472-X

    Google Scholar 

  19. Fujii S, Polprasert C, Tanaka S, Lien NPH, Qiu Y (2007) New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds—a review paper. J Water Supply: Res Technol—AQUA

    Google Scholar 

  20. Galloway JE, Moreno AVP, Lindstrom AB, Strynar MJ, Newton S, May AA, May AA, Weavers LK, Weavers LK (2020) Evidence of air dispersion: HFPO-DA and PFOA in Ohio and West Virginia surface water and soil near a fluoropolymer production facility. Environ Sci Technol 54(12):7175–7184. ISSN 15205851. https://doi.org/10.1021/acs.est.9b07384

  21. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35(7):1339–1342. ISSN 0013936X. https://doi.org/10.1021/es001834k

  22. Gligorovski S, Strekowski R, Barbati S, Vione D (2015) Environmental implications of hydroxyl radicals (\(^{.}\text{OH}\)). Chem Rev 115(24):13051–13092. ISSN 15206890. https://doi.org/10.1021/cr500310b

  23. Gomis MI, Vestergren R, Borg D, Cousins IT (2018) Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ Int 113(2017):1–9. ISSN 18736750. https://doi.org/10.1016/j.envint.2018.01.011

  24. Head R (2019) . PFAS regulations: how we got here and how to recover the costs. NEWWA

    Google Scholar 

  25. Head R (2019) . PFAS regulations: how we got here and how to recover the costs. NEWWA

    Google Scholar 

  26. Higgins CP, Luthy RG. Sorption of perfluorinated surfactants on sediments. Environ Sci Technol 40(23):7251–7256. ISSN 0013936X. https://doi.org/10.1021/es061000n

  27. Hogue C (2020) Incinerators may spread, not break down, PFAS. C &EN Global Enterprise 98(17):15–15. ISSN 2474-7408. URL https://cen.acs.org/environment/persistent-pollutants/Incincerators-spread-break-down-PFAS/98/web/2020/04

  28. Holmquist H, Fantke P, Cousins IT, Liagkouridis I, Peters GM (2020) An (Eco) toxicity life cycle impact assessment framework for per- and polyfluoroalkyl substances. Environ Sci Technol 54:6224–6234. https://doi.org/10.1021/acs.est.9b07774

  29. Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R (2004) Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environ Sci Technol 38(22):6118–6124. ISSN 0013936X. https://doi.org/10.1021/es049719n

  30. Hori H, Yamamoto A, Koike K, Kutsuna S, Osaka I, Arakawa R (2007) Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions. Chemosphere 68(3):572–578. ISSN 00456535. https://doi.org/10.1016/j.chemosphere.2006.12.038

  31. Houtz EF, Sedlak DL (2012) Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. Environ Sci Technol 46(17):9342–9349. ISSN 0013936X. https://doi.org/10.1021/es302274g

  32. Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA, Higgins CP, Sunderland EM (2016) Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, Military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett 3(10):344–350. ISSN 23288930. https://doi.org/10.1021/acs.estlett.6b00260

  33. Huang S, Jaffé PR, Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by acidimicrobium sp. Strain A6. Environ Sci Technol. ISSN 15205851. https://doi.org/10.1021/acs.est.9b04047

  34. Jang SS, Blanco M, Goddard WA, Caldwell G, Ross RB (2003) The source of helicity in perfluorinated N-alkanes. Macromolecules 36(14):5331–5341. ISSN 00249297. https://doi.org/10.1021/ma025645t

  35. Javed H, Lyu C, Sun R, Zhang D, Alvarez PJJ (2020) Discerning the inefficacy of hydroxyl radicals during perfluorooctanoic acid degradation. Chemosphere 247. ISSN 18791298. https://doi.org/10.1016/j.chemosphere.2020.125883

  36. Jiaoqin L, Wenrui X, Chenguang L, Daniel VHJ, Yumeng Q, Wu N, Gadah AB, Qu R, Zunyao W (2020) Kinetics and mechanism analysis for the photodegradation of PFOA on different solid particles. Chem Eng J 383(2019):123115. ISSN 13858947

    Google Scholar 

  37. ** L, Zhang P, Shao T, Zhao S (2014) Ferric ion mediated photodecomposition of aqueous perfluorooctane sulfonate (PFOS) under UV irradiation and its mechanism. J Hazardous Mater 271:9–15. ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2014.01.061

  38. Johansson JH, Yan H, Berger U, Cousins IT (2017) Water-to-air transfer of branched and linear PFOA: influence of pH, concentration and water type. Emerg Contaminants 3(1):46–53. ISSN 24056642. https://doi.org/10.1016/j.emcon.2017.03.001

  39. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Wouwe NV, Yang JH, Aldous KM (2004) Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 38(17):4489–4495. ISSN 0013936X. https://doi.org/10.1021/es0493446

  40. Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM (2011) Trends in exposure to polyfluoroalkyl chemicals in the U.S. population: 1999–2008. Environ Sci Technol 45(19):8037–8045. ISSN 0013936X. https://doi.org/10.1021/es1043613

  41. Kissa Erik (1994) Fluorinated surfactants in blood. J Fluorine Chem 66:5–6. https://doi.org/10.1016/0022-1139(93)02904-S

  42. Kutsuna S, Hori H, Sonoda T, Iwakami T, Wakisaka A (2012) Preferential solvation of perfluorooctanoic acid (PFOA) by methanol in methanol-water mixtures: a potential overestimation of the dissociation constant of PFOA using a Yasuda-Shedlovsky plot. Atmos Environ 49:411–414. ISSN 13522310. https://doi.org/10.1016/j.atmosenv.2011.12.009

  43. Kwiatkowski CF, Andrews DQ, Birnbaum LS, Bruton TA, Dewitt JC, Knappe DRU, Maffini MV, Miller MF, Pelch KE, Reade A, Soehl A, Trier X, Venier M, Wagner CC, Wang Z, Blum A (2020) Scientific basis for managing PFAS as a chemical class. Environ Sci Technol Lett. ISSN 23288930. https://doi.org/10.1021/acs.estlett.0c00255

  44. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99(2):366–394. ISSN 10966080. https://doi.org/10.1093/toxsci/kfm128

  45. Lemal DM (2004) Perspective on fluorocarbon chemistry. J Organ Chem 69(1):1–11. ISSN 00223263. https://doi.org/10.1021/jo0302556

  46. Lin IJ (1972) The hydrophile-lipophile balance (hlb) of fluorocarbon surfactants and its relation to the critical micelle concentration (cmc). J Phys Chemi 76(14):2019–2023. ISSN 00223654. https://doi.org/10.1021/j100658a020

  47. Liu CS, Shih K, Wang F (2012) Oxidative decomposition of perfluorooctanesulfonate in water by permanganate. Separ Purif Technol 87:95–100. ISSN 13835866. https://doi.org/10.1016/j.seppur.2011.11.027

  48. Liu H, Bruton TA, Doyle FM, Sedlak DL (2014) In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. Environ Sci Technol 48(17):10330–10336. ISSN 15205851. https://doi.org/10.1021/es502056d

  49. Liu J, Hoomissen DJV, Liu T, Maizel A, Huo X, Fernández SR, Ren C, **ao X, Fang Y, Schaefer CE, Higgins CP, Vyas S, Strathmann TJ (2018) Reductive defluorination of branched per- and polyfluoroalkyl substances with cobalt complex catalysts. Environ Sci Technol Lett 5(5):289–294.ISSN 23288930. https://doi.org/10.1021/acs.estlett.8b00122

  50. Li A, Zhang Z, Li P, Cai L, Zhang L, Gong J (2017) Nitrogen dioxide radicals mediated mineralization of perfluorooctanoic acid in aqueous nitrate solution with UV irradiation. Chemosphere 188:367–374. ISSN 18791298. https://doi.org/10.1016/j.chemosphere.2017.08.170

  51. Lopez-Espinosa MJ, Mondal D, Armstrong B, Bloom MS, Fletcher T (2012) Thyroid function and perfluoroalkyl acids in children living near a chemical plant. Environ Health Perspect 120(7):1036–1041. ISSN 00916765. https://doi.org/10.1289/ehp.1104370

  52. Luo Q, Yan X, Lu J, Huang Q (2018) Perfluorooctanesulfonate degrades in a laccase-mediator system. Environ Sci Technol 52(18):10617–10626. ISSN 15205851. https://doi.org/10.1021/acs.est.8b00839

  53. Lu D, Sha S, Jiayue L, Zhuangrong H, Zhang JX (2020) Treatment train approaches for the remediation of per- and polyfluoroalkyl substances (PFAS): a critical review. J Hazardous Mater 386(2019):121963. ISSN 18733336

    Google Scholar 

  54. Marek T, Anna B-C, Iwona B, Krzysztof K (2018) Oxidation advanced, processes reduction, treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)—a review of recent advances. Chem Eng J 336(2017):170–199. ISSN 13858947. https://doi.org/10.1016/j.cej.2017.10.153. November

  55. Merino N, Qu Y, Deeb RA, Hawley EL, Hoffmann MR, Mahendra S (2016) Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water. Environ Eng Sci 33(9):615–649. ISSN 15579018. https://doi.org/10.1089/ees.2016.0233

  56. Mitchell SM, Ahmad M, Teel AL, Watts RJ (2013) Degradation of perfluorooctanoic acid by reactive species generated through catalyzed \(H_{2}O_{2}\) propagation Reactions. Environ Sci Technol Lett 1(1):117–121. ISSN 23288930. https://doi.org/10.1021/ez4000862

  57. Moody CA, Field JA (2000) Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams. Environ Sci Technol 34(18):3864–3870. ISSN 0013936X. https://doi.org/10.1021/es991359u

  58. Moody CA, Martin JW, Kwan WC, Muir DCG, Mabury SA (2002) Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek. Environ Sci Technol 36(4):545–551. ISSN 0013936X. https://doi.org/10.1021/es011001+

  59. Ochoa-Herrera V, Sierra-Alvarez R, Somogyi A, Jacobsen NE, Wysocki VH, Field JA (2008) Reductive defluorination of perfluorooctane sulfonate. Environ Sci Technol 42(9):3260–3264. ISSN 0013936X. https://doi.org/10.1021/es702842q

  60. OECD Environment Health and Safety Publications—Series on Risk Management (2007) Lists of PFOS, PFAS, PFOA, PFCA, related compounds and chemicals that may degrade to PFCA. Env Jm Mono (2006)15 21 (April 2006):1–157, . ISSN 1609-1914. ENV/JM/MONO(2007)10

    Google Scholar 

  61. O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev 37(2):308–319. ISSN 03060012. https://doi.org/10.1039/b711844a

  62. Park S, Lee LS, Medina VF, Zull A, Waisner S (2016) Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere 145:376–383. ISSN 18791298. https://doi.org/10.1016/j.chemosphere.2015.11.097

  63. Paul AG, Jones KC, Sweetman AJ (2009) A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol 43(2): 386–392. ISSN 0013936X. https://doi.org/10.1021/es802216n

  64. Peer K (2013) Modern fluoroorganic chemistry, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, Germany. 9783527329441

    Google Scholar 

  65. Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40(1):32–44. ISSN 0013936X. https://doi.org/10.1021/es0512475

  66. Rahman MF, Peldszus S, Anderson WB (2014) Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res 50:318–340. ISSN 18792448. https://doi.org/10.1016/j.watres.2013.10.045

  67. Rappazzo KM, Coffman E, Hines EP (2017) Exposure to perfluorinated alkyl substances and health outcomes in children: a systematic review of the epidemiologic literature. Int J Environ Res Public Health 14(7):1–22. ISSN 16604601. https://doi.org/10.3390/ijerph14070691

  68. Rayne S (2013) Comment on “Letter to the Editor regarding, ‘polyfluorinated compounds: past, present, and future. Environ Sci Technol 47(5):2151. ISSN 0013-936X. https://doi.org/10.1021/es400475a

  69. Ross I, McDonough J, Miles J, Storch P, Kochunarayanan PT, Kalve E, Hurst J, Dasgupta SS, Burdick J (2018) A review of emerging technologies for remediation of PFASs. Remediation 28(2):101–126. ISSN 15206831. https://doi.org/10.1002/rem.21553

  70. Russell MH, Berti WR, Szostek B, Buck RC (2008) Investigation of the biodegradation potential of a fluoroacrylate polymer product in aerobic soils. Environ Sci Technol 42(3):800–807. ISSN 0013936X. https://doi.org/10.1021/es0710499

  71. Sahu SP, Qanbarzadeh M, Ateia M, Torkzadeh H, Maroli AS, Cates EL (2018) Rapid degradation and mineralization of perfluorooctanoic acid by a new petitjeanite Bi3O(OH)(PO4)2Microparticle ultraviolet photocatalyst. Environ Sci Technol Lett 5(8):533–538. ISSN 23288930. https://doi.org/10.1021/acs.estlett.8b00395

  72. Schröder HF, José HJ, Gebhardt W, Moreira RFPM, Pinnekamp J (2010) Biological wastewater treatment followed by physicochemical treatment for the removal of fluorinated surfactants. Water Sci Technol 61(12):3208–3215. ISSN 02731223. https://doi.org/10.2166/wst.2010.917

  73. Schröder HF, Meesters RJW (2005) Stability of fluorinated surfactants in advanced oxidation processes—a follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. J Chromatogr A 1082(1 SPEC. ISS.):110–119. ISSN 00219673. https://doi.org/10.1016/j.chroma.2005.02.070

  74. Secretariat of the Basel Rotterdam and Stockholm Conventions. Exempted use for PFOS, its salts and PFOSF (2019), 2019

    Google Scholar 

  75. Secretariat of the Basel Rotterdam and Stockholm. Time-limited exempted uses for PFOA, its salts and PFOA-related compound (2019)

    Google Scholar 

  76. Sheriff I, Debela SA, Kabia OA, Ntoutoume CE, Turay MJ (2020) The phase out of and restrictions on per-and polyfluoroalkyl substances: time for a rethink. Chemosphere 251. ISSN 18791298. https://doi.org/10.1016/j.chemosphere.2020.126313

  77. Shi J, He J, Wang HJ (2011) A computational study of C-X (X=H, C, F, Cl) bond dissociation enthalpies (BDEs) in polyhalogenated methanes and ethanes. J Phys Organ Chem 24(1):65–73. ISSN 08943230. https://doi.org/10.1002/poc.1704

  78. Sinclair GM, Long SM, Jones OAH (2020) What are the effects of PFAS exposure at environmentally relevant concentrations? Chemosphere 258:127340. ISSN 18791298. https://doi.org/10.1016/j.chemosphere.2020.127340

  79. Steenland K, Fletcher T, Savitz DA (2010) Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect 118(8):1100–1108. ISSN 00916765. https://doi.org/10.1289/ehp.0901827

  80. Steenland K, Zhao L, Winquist A, Parks C (2013) Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the Mid-Ohio Valley. Environ Health Perspect 121(8):900–905. ISSN 00916765. https://doi.org/10.1289/ehp.1206449

  81. Stratton GR, Bellona CL, Dai F, Holsen TM, Thagard SM (2015) Plasma-based water treatment: conception and application of a new general principle for reactor design. Chem Eng J 273:543–550. ISSN 13858947. https://doi.org/10.1016/j.cej.2015.03.059

  82. Stratton GR, Dai F, Bellona CL, Holsen TM, Dickenson ERV, Thagard SM (2017) Plasma-based water treatment: efficient transformation of perfluoroalkyl substances in prepared solutions and contaminated groundwater. Environ Sci Technol 51(3):1643–1648. ISSN 15205851. https://doi.org/10.1021/acs.est.6b04215

  83. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG (2019) A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Exposure Sci Environ Epidemiol 29(2):131–147. ISSN 1559064X. http://dx.doi.org/10.1038/s41370-018-0094-1

  84. Tang H, **ang Q, Lei M, Yan J, Zhu L, Zou J (2012) Efficient degradation of perfluorooctanoic acid by UV-Fenton process. Chem Eng J 184:156–162. ISSN 13858947. https://doi.org/10.1016/j.cej.2012.01.020

  85. Taves DR (1968) Evidence that there are two forms of fluoride in human serum [16]. Nature 217(5133):1050–1051. ISSN 00280836. https://doi.org/10.1038/2171050b0

  86. Thagard SM, Stratton GR, Dai F, Bellona CL, Holsen TM, Bohl DG, Paek E, Dickenson ERV (2017) Plasma-based water treatment: development of a general mechanistic model to estimate the treatability of different types of contaminants. J Phys D: Appl Phys 50(1):2017. ISSN 13616463. https://doi.org/10.1088/1361-6463/50/1/014003

  87. Thi LAP, Do HT, Lee YC, Lo SL (2013) Photochemical decomposition of perfluorooctanoic acids in aqueous carbonate solution with UV irradiation. Chem Eng J 221:258–263. ISSN 13858947. https://doi.org/10.1016/j.cej.2013.01.084

  88. Tullo A (2000) 3M study raised EPA’s concerns. Chem Eng News Arch 78(22):12–13. ISSN 0009-2347. https://doi.org/10.1021/cen-v078n022.p012a

  89. Tullo A (2000) How-to manual elucidates lab design, construction process. Chem Eng News Arch 78(21):9–10. ISSN 0009-2347. https://doi.org/10.1021/cen-v078n021.p010a

  90. US Environmental Protection Agency (2016) Drinking water health advisories for PFOA and PFOS. URL https://www.epa.gov/ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos

  91. US EPA (2020) Risk management for per- and polyfluoroalkyl substances (PFAS) under TSCA

    Google Scholar 

  92. Vecitis CD, Park H, Cheng J, Mader BT, Hoffmann MR (2009) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Frontiers Environ Sci Eng China 3(2):129–151. ISSN 16737415. https://doi.org/10.1007/s11783-009-0022-7

  93. Vierke L, Berger U, Cousins IT (2013) Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport. Environ Sci Technol 47(19):11032–11039. ISSN 0013936X. https://doi.org/10.1021/es402691z

  94. Wang Y, Chang W, Wang L, Zhang Y, Zhang Y, Wang M, Wang Y, Li P (2019) A review of sources, multimedia distribution and health risks of novel fluorinated alternatives. Ecotoxicol Environ Safety 182(July):109402. ISSN 10902414. https://doi.org/10.1016/j.ecoenv.2019.109402

  95. Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K (2014) Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environ Int 70:62–75. ISSN 18736750. https://doi.org/10.1016/j.envint.2014.04.013

  96. Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K (2014) Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: the remaining pieces of the puzzle. Environ Int 69:166–176. ISSN 18736750. https://doi.org/10.1016/j.envint.2014.04.013

  97. Wang Z, Cousins IT, Scheringer M, Hungerbuehler K (2015) Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environ Int 75:172–179.ISSN 18736750. https://doi.org/10.1016/j.envint.2014.11.013

  98. Wang Z, Dewitt JC, Higgins CP, Cousins IT (2017) A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ Sci Technol 51(5):2508–2518. ISSN 15205851. https://doi.org/10.1021/acs.est.6b04806

  99. Wang W, Rhodes G, Ge J, Yu X, Li H (2020) Uptake and accumulation of per- and polyfluoroalkyl substances in plants. Chemosphere 261. ISSN 18791298. https://doi.org/10.1016/j.chemosphere.2020.127584

  100. Wang L, Sun L, Yu Z, Hou Y, Peng Z, Yang F, Chen Y, Huang J (2017) Synergetic decomposition performance and mechanism of perfluorooctanoic acid in dielectric barrier discharge plasma system with Fe3O4@SiO2-BiOBr magnetic photocatalyst. Molecular Catalysis 441:179–189. ISSN 24688231. https://doi.org/10.1016/j.mcat.2017.08.014

  101. Wang X, Wang P, Liu X, Hu L, Wang Q, Xu P (2020) Enhanced degradation of PFOA in water by dielectric barrier discharge plasma in a coaxial cylindrical structure with the assistance of peroxymonosulfate. Chem Eng J 389(February):124381. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2020.124381

  102. Wang Y, Zhang P, Pan G, Chen H (2008) Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light. J Hazardous Mater 160(1):181–186, 2008. ISSN 03043894. https://doi.org/10.1016/j.jhazmat.2008.02.105

  103. Washington JW, Ellington JJ, Jenkins TM, Evans JJ, Yoo H, Hafner SC (2009) Degradability of an acrylate-linked, fluorotelomer polymer in soil. Environ Sci Technol 43(17):6617–6623. ISSN 0013936X. https://doi.org/10.1021/es9002668

  104. Wojnárovits L, Takács E (2019) Rate constants of sulfate radical anion reactions with organic molecules: a review. Chemosphere 220:1014–1032. ISSN 18791298. https://doi.org/10.1016/j.chemosphere.2018.12.156

  105. Xu B, Boshir M, Zhou JL, Altaee A, Wu M (2017) Photocatalytic removal of per fl uoroalkyl substances from water and wastewater: mechanism , kinetics and controlling factors. Chemosphere 189:717–729. https://doi.org/10.1016/j.chemosphere.2017.09.110

  106. Xuechun Wang, Yuan Zhuang, Jia Zhang, Laizhou Song, and Baoyou Shi. Pollutant degradation behaviors in a heterogeneous Fenton system through Fe/S-doped aerogel. Science of the Total Environment, 714: 1–12, 2020. ISSN 18791026. https://doi.org/10.1016/j.scitotenv.2019.136436

  107. Yang S, Cheng J, Sun J, Hu Y, Liang X (2013) Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation. PLoS ONE 8(10):6–15. ISSN 19326203. https://doi.org/10.1371/journal.pone.0074877

  108. Yang A, Ching C, Easler M, Helbling DE, Dichtel WR (2020) Cyclodextrin polymers with nitrogen- containing tripodal crosslinkers for efficient PFAS adsorption. ACS Mater Lett 2:1240–1245. https://doi.org/10.1021/acsmaterialslett.0c00240

  109. Young CJ, Mabury SA (2010) Atmospheric perfluorinated acid precursors: chemistry, occurrence, and impacts. In: De Voogt P (eds) Reviews of environmental contamination and toxicology 208:2–98. Springer. ISBN 978-1-4419-6879-1. http://springer.longhoe.net/10.1007/978-1-4419-6880-7

  110. Yu Y, Zhang K, Li Z, Ren C, Chen J, Lin Y-H, Liu J, Men Y (2020) Microbial cleavage of C-F bonds in two C 6 per- and polyfluorinated compounds via reductive defluorination. Environ Sci Technol. ISSN 0013-936X. https://doi.org/10.1021/acs.est.0c04483

  111. Zushi YZ, Masunaga S, Lee H, Mabury SA (2014) Transformation products of emerging contaminants in the environment. Wiley, West Syssex, United Kingdom. ISBN 9781118339596. https://doi.org/10.1002/9781118339558

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Vyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carre-Burritt, A.E., Vyas, S. (2024). Life Cycle Considerations for Per- And Polyfluoroalkyl Substances (PFASs) and the Evolution of Society’s Perspective on Their Usage. In: Shukla, M., Ferguson, E., Leszczynski, J. (eds) Emerging Materials and Environment. Challenges and Advances in Computational Chemistry and Physics, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-031-39470-6_9

Download citation

Publish with us

Policies and ethics

Navigation