Diversity Oriented Synthesis of Metal-Organic Frameworks

  • Chapter
  • First Online:
Advanced Materials for Multidisciplinary Applications

Abstract

Metal‒Organic Frameworks (MOFs) are an emerging class of novel porous materials bearing unique high surface area and structural tunability. Post-synthetic functionalization plays a pivotal role not only in facilely diversifying MOF structures but also in meeting the requirement in practical applications. Herein, we explore the utility of diversity oriented synthesis (DOS) in the MOF field, summarizing the various post-synthetic modifications and pore engineering techniques and discussing how they regulate the pore environment and sizes of MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloch ED, Britt D, Lee C, Doonan CJ, Uribe-Romo FJ, Furukawa H, Long JR, Yaghi OM (2010) Metal insertion in a microporous metal−organic framework lined with 2,2′-bipyridine. J Am Chem Soc 132(41):14382–14384

    Article  CAS  Google Scholar 

  2. Yee K-K, Reimer N, Liu J, Cheng S-Y, Yiu S-M, Weber J, Stock N, Xu Z (2013) Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase. J Am Chem Soc 135(21):7795–7798

    Article  CAS  Google Scholar 

  3. Dunning SG, Nandra G, Conn AD, Chai W, Sikma RE, Lee JS, Kunal P, Reynolds JE III, Chang J-S, Steiner A, Henkelman G, Humphrey SM (2018) A metal-organic framework with cooperative phosphines that permit post-synthetic installation of open metal sites. Angew Chem Int Ed 57(30):9295–9299

    Article  CAS  Google Scholar 

  4. Morris W, Volosskiy B, Demir S, Gándara F, McGrier PL, Furukawa H, Cascio D, Stoddart JF, Yaghi OM (2012) Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg Chem 51(12):6443–6445

    Article  CAS  Google Scholar 

  5. Kong G-Q, Ou S, Zou C, Wu C-D (2012) Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. J Am Chem Soc 134(48):19851–19857

    Article  CAS  Google Scholar 

  6. Wang Z, Cohen SM (2008) Tandem modification of metal-organic frameworks by a postsynthetic approach. Angew Chem Int Ed 47(25):4699–4702

    Article  CAS  Google Scholar 

  7. Fracaroli AM, Siman P, Nagib DA, Suzuki M, Furukawa H, Toste FD, Yaghi OM (2016) Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal-organic framework crystals. J Am Chem Soc 138(27):8352–8355

    Article  CAS  Google Scholar 

  8. Bernt S, Guillerm V, Serre C, Stock N (2011) Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem Commun 47(10):2838–2840

    Article  CAS  Google Scholar 

  9. Li P-Z, Wang X-J, Tan RHD, Zhang Q, Zou R, Zhao Y (2013) Rationally “clicked” post-modification of a highly stable metal–organic framework and its high improvement on CO2-selective capture. RSC Adv 3(36):15566–15570

    Article  CAS  Google Scholar 

  10. Wu S, Chen L, Yin B, Li Y (2015) “Click” post-functionalization of a metal–organic framework for engineering active single-site heterogeneous Ru(iii) catalysts. Chem Commun 51(48):9884–9887

    Article  CAS  Google Scholar 

  11. Daliran S, Ghazagh-Miri M, Oveisi AR, Khajeh M, Navalón S, Âlvaro M, Ghaffari-Moghaddam M, Samareh Delarami H, García H (2020) A pyridyltriazol functionalized zirconium metal-organic framework for selective and highly efficient adsorption of palladium. ACS Appl Mater Interfaces 12(22):25221–25232

    Article  CAS  Google Scholar 

  12. Bryant MR, Cunynghame T, Hunter SO, Telfer SG, Richardson C (2021) Trisequential postsynthetic modification of a tagged IRMOF-9 framework. Inorg Chem 60(16):11711–11719

    Article  CAS  Google Scholar 

  13. Samarakoon KP, Satterfield CS, McCoy MC, Pivaral-Urbina DA, Islamoglu T, Day VW, Gadzikwa T (2019) Uniform, binary functionalization of a metal-organic framework material. Inorg Chem 58(14):8906–8909

    Article  CAS  Google Scholar 

  14. Das S, Kim H, Kim K (2009) Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal−organic frameworks. J Am Chem Soc 131(11):3814–3815

    Article  CAS  Google Scholar 

  15. Kim Y, Das S, Bhattacharya S, Hong S, Kim MG, Yoon M, Natarajan S, Kim K (2012) Metal-ion metathesis in metal-organic frameworks: a synthetic route to new metal-organic frameworks. Chem Eur J 18(52):16642–16648

    Article  CAS  Google Scholar 

  16. Zou L, Feng D, Liu T-F, Chen Y-P, Yuan S, Wang K, Wang X, Fordham S, Zhou H-C (2016) A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chem Sci 7(2):1063–1069

    Article  CAS  Google Scholar 

  17. Park J, Feng D, Zhou H-C (2015) Dual exchange in PCN-333: a facile strategy to chemically robust mesoporous chromium metal-organic framework with functional groups. J Am Chem Soc 137(36):11801–11809

    Article  CAS  Google Scholar 

  18. Liu T-F, Zou L, Feng D, Chen Y-P, Fordham S, Wang X, Liu Y, Zhou H-C (2014) Stepwise synthesis of robust metal-organic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation. J Am Chem Soc 136(22):7813–7816

    Article  CAS  Google Scholar 

  19. Garai B, Bon V, Krause S, Schwotzer F, Gerlach M, Senkovska I, Kaskel S (2020) Tunable flexibility and porosity of the metal-organic framework DUT-49 through postsynthetic metal exchange. Chem Mater 32(2):889–896

    Article  CAS  Google Scholar 

  20. Kim M, Cahill JF, Fei H, Prather KA, Cohen SM (2012) Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J Am Chem Soc 134(43):18082–18088

    Article  CAS  Google Scholar 

  21. Song X, Kim TK, Kim H, Kim D, Jeong S, Moon HR, Lah MS (2012) Post-synthetic modifications of framework metal ions in isostructural metal-organic frameworks: core-shell heterostructures via selective transmetalations. Chem Mater 24(15):3065–3073

    Article  CAS  Google Scholar 

  22. Song X, Jeong S, Kim D, Lah MS (2012) Transmetalations in two metal–organic frameworks with different framework flexibilities: kinetics and core–shell heterostructure. CrystEngComm 14(18):5753–5756

    Article  CAS  Google Scholar 

  23. Brozek CK, Dincă M (2012) Lattice-imposed geometry in metal–organic frameworks: lacunary Zn4O clusters in MOF-5 serve as tripodal chelating ligands for Ni2+. Chem Sci 3(6):2110–2113

    Article  CAS  Google Scholar 

  24. Brozek CK, Bellarosa L, Soejima T, Clark TV, López N, Dincă M (2014) Solvent-dependent cation exchange in metal-organic frameworks. Chem Eur J 20(23):6871–6874

    Article  CAS  Google Scholar 

  25. Smith SJD, Ladewig BP, Hill AJ, Lau CH, Hill MR (2015) Post-synthetic Ti Exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes. Sci Rep 5(1):7823

    Article  CAS  Google Scholar 

  26. Hon Lau C, Babarao R, Hill MR (2013) A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chem Commun 49(35):3634–3636

    Article  CAS  Google Scholar 

  27. Sun D, Sun F, Deng X, Li Z (2015) Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74. Inorg Chem 54(17):8639–8643

    Article  CAS  Google Scholar 

  28. Denysenko D, Werner T, Grzywa M, Puls A, Hagen V, Eickerling G, Jelic J, Reuter K, Volkmer D (2012) Reversible gas-phase redox processes catalyzed by Co-exchanged MFU-4l(arge). Chem Commun 48(9):1236–1238

    Article  CAS  Google Scholar 

  29. Dincǎ M, Long JR (2007) High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal−organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. J Am Chem Soc 129(36):11172–11176

    Article  Google Scholar 

  30. Brozek CK, Cozzolino AF, Teat SJ, Chen Y-S, Dincă M (2013) Quantification of site-specific cation exchange in metal-organic frameworks using multi-wavelength anomalous x-ray dispersion. Chem Mater 25(15):2998–3002

    Article  CAS  Google Scholar 

  31. Liu S, Liu B, Yao S, Liu Y (2020) Post-synthetic metal-ion metathesis in a single-crystal-to-single-crystal process: improving the gas adsorption and separation capacity of an indium-based metal–organic framework. Inorg Chem Front 7(7):1591–1597

    Article  CAS  Google Scholar 

  32. Kung C-W, Audu CO, Peters AW, Noh H, Farha OK, Hupp JT (2017) Copper nanoparticles installed in metal-organic framework thin films are electrocatalytically competent for CO2 reduction. ACS Energy Lett 2(10):2394–2401

    Article  CAS  Google Scholar 

  33. Geravand E, Farzaneh F, Ghiasi M (2019) Metalation and DFT studies of metal organic frameworks UiO-66(Zr) with vanadium chloride as allyl alcohol epoxidation catalyst. J Mol Struct 1198:126940

    Article  CAS  Google Scholar 

  34. Noh H, Kung C-W, Otake K-I, Peters AW, Li Z, Liao Y, Gong X, Farha OK, Hupp JT (2018) Redox-mediator-assisted electrocatalytic hydrogen evolution from water by a molybdenum sulfide-functionalized metal-organic framework. ACS Catal 8(10):9848–9858

    Article  CAS  Google Scholar 

  35. Noh H, Kung C-W, Islamoglu T, Peters AW, Liao Y, Li P, Garibay SJ, Zhang X, DeStefano MR, Hupp JT, Farha OK (2018) Room temperature synthesis of an 8-connected Zr-based metal-organic framework for top-down nanoparticle encapsulation. Chem Mater 30(7):2193–2197

    Article  CAS  Google Scholar 

  36. Yuan S, Chen Y-P, Qin J, Lu W, Wang X, Zhang Q, Bosch M, Liu T-F, Lian X, Zhou H-C (2015) Cooperative cluster metalation and ligand migration in zirconium metal-organic frameworks. Angew Chem Int Ed 54(49):14696–14700

    Article  CAS  Google Scholar 

  37. Mondloch JE, Bury W, Fairen-Jimenez D, Kwon S, DeMarco EJ, Weston MH, Sarjeant AA, Nguyen ST, Stair PC, Snurr RQ, Farha OK, Hupp JT (2013) Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J Am Chem Soc 135(28):10294–10297

    Article  CAS  Google Scholar 

  38. Wang TC, Vermeulen NA, Kim IS, Martinson ABF, Stoddart JF, Hupp JT, Farha OK (2016) Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nat Protoc 11(1):149–162

    Article  CAS  Google Scholar 

  39. Ren J, Jen T-C (2021) Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies. Coord Chem Rev 430:213734

    Article  CAS  Google Scholar 

  40. Kim IS, Ahn S, Vermeulen NA, Webber TE, Gallington LC, Chapman KW, Penn RL, Hupp JT, Farha OK, Notestein JM, Martinson ABF (2020) The synthesis science of targeted vapor-phase metal-organic framework postmodification. J Am Chem Soc 142(1):242–250

    Article  CAS  Google Scholar 

  41. Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17(5):236–246

    Article  CAS  Google Scholar 

  42. Zheng J, Ye J, Ortuño MA, Fulton JL, Gutiérrez OY, Camaioni DM, Motkuri RK, Li Z, Webber TE, Mehdi BL, Browning ND, Penn RL, Farha OK, Hupp JT, Truhlar DG, Cramer CJ, Lercher JA (2019) Selective methane oxidation to methanol on Cu-Oxo dimers stabilized by zirconia nodes of an NU-1000 metal-organic framework. J Am Chem Soc 141(23):9292–9304

    Article  CAS  Google Scholar 

  43. Gallington LC, Kim IS, Liu W-G, Yakovenko AA, Platero-Prats AE, Li Z, Wang TC, Hupp JT, Farha OK, Truhlar DG, Martinson ABF, Chapman KW (2016) Regioselective atomic layer deposition in metal-organic frameworks directed by dispersion interactions. J Am Chem Soc 138(41):13513–13516

    Article  CAS  Google Scholar 

  44. Kim IS, Li Z, Zheng J, Platero-Prats AE, Mavrandonakis A, Pellizzeri S, Ferrandon M, Vjunov A, Gallington LC, Webber TE, Vermeulen NA, Penn RL, Getman RB, Cramer CJ, Chapman KW, Camaioni DM, Fulton JL, Lercher JA, Farha OK, Hupp JT, Martinson ABF (2018) Sinter-resistant platinum catalyst supported by metal-organic framework. Angew Chem Int Ed 57(4):909–913

    Article  CAS  Google Scholar 

  45. Tan K, Jensen S, Feng L, Wang H, Yuan S, Ferreri M, Klesko JP, Rahman R, Cure J, Li J, Zhou H-C, Thonhauser T, Chabal YJ (2019) Reactivity of atomic layer deposition precursors with OH/H2O-containing metal organic framework materials. Chem Mater 31(7):2286–2295

    Article  CAS  Google Scholar 

  46. Kim IS, Borycz J, Platero-Prats AE, Tussupbayev S, Wang TC, Farha OK, Hupp JT, Gagliardi L, Chapman KW, Cramer CJ, Martinson ABF (2015) Targeted single-site MOF node modification: trivalent metal loading via atomic layer deposition. Chem Mater 27(13):4772–4778

    Article  CAS  Google Scholar 

  47. Klet RC, Wang TC, Fernandez LE, Truhlar DG, Hupp JT, Farha OK (2016) Synthetic access to atomically dispersed metals in metal-organic frameworks via a combined atomic-layer-deposition-in-MOF and metal-exchange approach. Chem Mater 28(4):1213–1219

    Article  CAS  Google Scholar 

  48. Lemaire PC, Lee DT, Zhao J, Parsons GN (2017) Reversible low-temperature metal node distortion during atomic layer deposition of Al2O3 and TiO2 on UiO-66-NH2 metal-organic framework crystal surfaces. ACS Appl Mater Interfaces 9(26):22042–22054

    Article  CAS  Google Scholar 

  49. Li Z, Peters AW, Liu J, Zhang X, Schweitzer NM, Hupp JT, Farha OK (2017) Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation. Inorg Chem Front 4(5):820–824

    Article  CAS  Google Scholar 

  50. Ji P, Manna K, Lin Z, Feng X, Urban A, Song Y, Lin W (2017) Single-site cobalt catalysts at new Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 metal-organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J Am Chem Soc 139(20):7004–7011

    Article  CAS  Google Scholar 

  51. Ji P, Manna K, Lin Z, Urban A, Greene FX, Lan G, Lin W (2016) Single-site cobalt catalysts at new Zr8(μ2-O)8(μ2-OH)4 metal-organic framework nodes for highly active hydrogenation of alkenes, imines, carbonyls, and heterocycles. J Am Chem Soc 138(37):12234–12242

    Article  CAS  Google Scholar 

  52. Ji P, Song Y, Drake T, Veroneau SS, Lin Z, Pan X, Lin W (2018) Titanium(III)-oxo clusters in a metal-organic framework support single-site co(II)-hydride catalysts for arene hydrogenation. J Am Chem Soc 140(1):433–440

    Article  CAS  Google Scholar 

  53. Manna K, Ji P, Greene FX, Lin W (2016) Metal-organic framework nodes support single-site magnesium-alkyl catalysts for hydroboration and hydroamination reactions. J Am Chem Soc 138(24):7488–7491

    Article  CAS  Google Scholar 

  54. Manna K, Ji P, Lin Z, Greene FX, Urban A, Thacker NC, Lin W (2016) Chemoselective single-site earth-abundant metal catalysts at metal–organic framework nodes. Nat Commun 7:12610

    Article  CAS  Google Scholar 

  55. Larabi C, Quadrelli EA (2012) Titration of Zr3(μ-OH) hydroxy groups at the cornerstones of bulk MOF UiO-67, [Zr6O4(OH)4(biphenyldicarboxylate)6], and their reaction with [AuMe(PMe3)]. Eur J Inorg Chem 2012(18):3014–3022

    Article  CAS  Google Scholar 

  56. Kondo M, Furukawa S, Hirai K, Kitagawa S (2010) Coordinatively immobilized monolayers on porous coordination polymer crystals. Angew Chem Int Ed Engl 49(31):5327–5330

    Article  CAS  Google Scholar 

  57. Furukawa S, Hirai K, Nakagawa K, Takashima Y, Matsuda R, Tsuruoka T, Kondo M, Haruki R, Tanaka D, Sakamoto H, Shimomura S, Sakata O, Kitagawa S (2009) Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. Angew Chem Int Ed Engl 48(10):1766–1770

    Article  CAS  Google Scholar 

  58. Furukawa S, Hirai K, Takashima Y, Nakagawa K, Kondo M, Tsuruoka T, Sakata O, Kitagawa S (2009) A block PCP crystal: anisotropic hybridization of porous coordination polymers by face-selective epitaxial growth. Chem Commun (Camb) 34:5097–5099

    Article  Google Scholar 

  59. Karagiaridi O, Bury W, Tylianakis E, Sarjeant AA, Hupp JT, Farha OK (2013) Opening metal-organic frameworks vol. 2: inserting longer pillars into pillared-paddlewheel structures through solvent-assisted linker exchange. Chem Mater 25(17):3499–3503

    Google Scholar 

  60. Burnett BJ, Barron PM, Hu CH, Choe W (2011) Stepwise synthesis of metal-organic frameworks: replacement of structural organic linkers. J Am Chem Soc 133(26):9984–9987

    Article  CAS  Google Scholar 

  61. Pal TK, Neogi S, Bharadwaj PK (2015) Versatile tailoring of paddle-wheel Zn-II metal-organic frameworks through single-crystal-to-single-crystal transformations. Chem-Eur J 21(45):16083–16090

    Article  CAS  Google Scholar 

  62. Vermeulen NA, Karagiaridi O, Sarjeant AA, Stern CL, Hupp JT, Farha OK, Stoddart JF (2013) Aromatizing olefin metathesis by ligand isolation inside a metal-organic framework. J Am Chem Soc 135(40):14916–14919

    Article  CAS  Google Scholar 

  63. Cao L-H, Liu X, Tang X-H, Liu J, Xu X-Q, Zang S-Q, Ma Y-M (2019) A fivefold linker length reduction in an interpenetrated metal–organic framework via sequential solvent-assisted linker exchange. Chem Commun 55(84):12671–12674

    Article  CAS  Google Scholar 

  64. Planes OM, Schouwink PA, Bila JL, Fadaei-Tirani F, Scopelliti R, Severin K (2020) Incorporation of clathrochelate-based metalloligands in metal-organic frameworks by solvent-assisted ligand exchange. Cryst Growth Des 20(3):1394–1399

    Article  CAS  Google Scholar 

  65. Bury W, Fairen-Jimenez D, Lalonde MB, Snurr RQ, Farha OK, Hupp JT (2013) Control over catenation in pillared paddlewheel metal-organic framework materials via solvent-assisted linker exchange. Chem Mater 25(5):739–744

    Article  CAS  Google Scholar 

  66. Xu Y, Howarth AJ, Islamoglu T, da Silva CT, Hupp JT, Farha OK (2016) Combining solvent-assisted linker exchange and transmetallation strategies to obtain a new non-catenated nickel (II) pillared-paddlewheel MOF. Inorg Chem Commun 67:60–63

    Article  CAS  Google Scholar 

  67. Takaishi S, DeMarco EJ, Pellin MJ, Farha OK, Hupp JT (2013) Solvent-assisted linker exchange (SALE) and post-assembly metallation in porphyrinic metal-organic framework materials. Chem Sci 4(4):1509–1513

    Article  CAS  Google Scholar 

  68. So MC, Beyzavi MH, Sawhney R, Shekhah O, Eddaoudi M, Al-Juaid SS, Hupp JT, Farha OK (2015) Post-assembly transformations of porphyrin-containing metal-organic framework (MOF) films fabricated via automated layer-by-layer coordination. Chem Commun 51(1):85–88

    Article  CAS  Google Scholar 

  69. Xu Y, Vermeulen NA, Liu Y, Hupp JT, Farha OK (2016) SALE-Ing a MOF-based “ship of theseus”. sequential building-block replacement for complete reformulation of a pillared-paddlewheel metal-organic framework. Eur J Inorg Chem 2016(27):4345–4348

    Google Scholar 

  70. Gross AF, Sherman E, Mahoney SL, Vajo JJ (2013) Reversible ligand exchange in a metal-organic framework (MOF): toward MOF-based dynamic combinatorial chemical systems. J Phys Chem A 117(18):3771–3776

    Article  CAS  Google Scholar 

  71. Boissonnault JA, Wong-Foy AG, Matzger AJ (2017) Core-shell structures arise naturally during ligand exchange in metal-organic frameworks. J Am Chem Soc 139(42):14841–14844

    Article  CAS  Google Scholar 

  72. Fluch U, Paneta V, Primetzhofer D, Ott S (2017) Uniform distribution of post-synthetic linker exchange in metal–organic frameworks revealed by Rutherford backscattering spectrometry. Chem Commun 53(48):6516–6519

    Article  CAS  Google Scholar 

  73. Dodson RA, Kalenak AP, Matzger AJ (2020) Solvent choice in metal-organic framework linker exchange permits microstructural control. J Am Chem Soc 142(49):20806–20813

    Article  CAS  Google Scholar 

  74. Kim M, Cahill JF, Su Y, Prather KA, Cohen SM (2012) Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks. Chem Sci 3(1):126–130

    Article  CAS  Google Scholar 

  75. Nickerl G, Senkovska I, Kaskel S (2015) Tetrazine functionalized zirconium MOF as an optical sensor for oxidizing gases. Chem Commun 51(12):2280–2282

    Article  CAS  Google Scholar 

  76. Mutruc D, Goulet-Hanssens A, Fairman S, Wahl S, Zimathies A, Knie C, Hecht S (2019) Modulating guest uptake in core-shell MOFs with visible light. Angew Chem Int Ed 58(37):12862–12867

    Article  CAS  Google Scholar 

  77. Pullen S, Fei H, Orthaber A, Cohen SM, Ott S (2013) Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. J Am Chem Soc 135(45):16997–17003

    Article  CAS  Google Scholar 

  78. Chambers MB, Wang X, Elgrishi N, Hendon CH, Walsh A, Bonnefoy J, Canivet J, Quadrelli EA, Farrusseng D, Mellot-Draznieks C, Fontecave M (2015) Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks. Chemsuschem 8(4):603–608

    Article  CAS  Google Scholar 

  79. Carson F, Martínez-Castro E, Marcos R, Miera GG, Jansson K, Zou X, Martín-Matute B (2015) Effect of the functionalisation route on a Zr-MOF with an Ir–NHC complex for catalysis. Chem Commun 51(54):10864–10867

    Article  CAS  Google Scholar 

  80. Zhang X, Sun J, Wei G, Liu Z, Yang H, Wang K, Fei H (2019) In situ generation of an n-heterocyclic carbene functionalized metal-organic framework by postsynthetic ligand exchange: efficient and selective hydrosilylation of CO2. Angew Chem Int Ed 58(9):2844–2849

    Article  CAS  Google Scholar 

  81. Tan CX, Han X, Li ZJ, Liu Y, Cui Y (2018) Controlled exchange of achiral linkers with chiral linkers in Zr-based UiO-68 metal-organic framework. J Am Chem Soc 140(47):16229–16236

    Article  CAS  Google Scholar 

  82. Taddei M, Wakeham RJ, Koutsianos A, Andreoli E, Barron AR (2018) Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: beware of the defects! Angew Chem Int Ed 57(36):11706–11710

    Article  CAS  Google Scholar 

  83. Marreiros J, Caratelli C, Hajek J, Krajnc A, Fleury G, Bueken B, De Vos DE, Mali G, Roeffaers MBJ, Van Speybroeck V, Ameloot R (2019) Active role of methanol in post-synthetic linker exchange in the metal-organic framework UiO-66. Chem Mater 31(4):1359–1369

    Article  CAS  Google Scholar 

  84. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts Chem Res 43(1):58–67

    Article  CAS  Google Scholar 

  85. Zhang J-P, Zhang Y-B, Lin J-B, Chen X-M (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112(2):1001–1033

    Article  CAS  Google Scholar 

  86. Park KS, Ni Z, Cote AP, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. P Natl Acad Sci USA 103(27):10186–10191

    Article  CAS  Google Scholar 

  87. Karagiaridi O, Bury W, Sarjeant AA, Stern CL, Farha OK, Hupp JT (2012) Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange. Chem Sci 3(11):3256–3260

    Article  CAS  Google Scholar 

  88. Karagiaridi O, Lalonde MB, Bury W, Sarjeant AA, Farha OK, Hupp JT (2012) Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc 134(45):18790–18796

    Article  CAS  Google Scholar 

  89. Lewis DW, Ruiz-Salvador AR, Gómez A, Rodriguez-Albelo LM, Coudert F-X, Slater B, Cheetham AK, Mellot-Draznieks C (2009) Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm 11(11):2272–2276

    Article  CAS  Google Scholar 

  90. Lalonde MB, Mondloch JE, Deria P, Sarjeant AA, Al-Juaid SS, Osman OI, Farha OK, Hupp JT (2015) Selective solvent-assisted linker exchange (SALE) in a series of zeolitic imidazolate frameworks. Inorg Chem 54(15):7142–7144

    Article  CAS  Google Scholar 

  91. Jayachandrababu KC, Sholl DS, Nair S (2017) Structural and mechanistic differences in mixed-linker zeolitic imidazolate framework synthesis by solvent assisted linker exchange and de novo routes. J Am Chem Soc 139(16):5906–5915

    Article  CAS  Google Scholar 

  92. Yu D, Shao Q, Song Q, Cui J, Zhang Y, Wu B, Ge L, Wang Y, Zhang Y, Qin Y, Vajtai R, Ajayan PM, Wang H, Xu T, Wu Y (2020) A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nat Commun 11(1):927

    Article  CAS  Google Scholar 

  93. Katayama Y, Kalaj M, Barcus KS, Cohen SM (2019) Self-assembly of metal-organic framework (MOF) nanoparticle monolayers and free-standing multilayers. J Am Chem Soc 141(51):20000–20003

    Article  CAS  Google Scholar 

  94. Pastore VJ, Cook TR, Rzayev J (2018) Polymer–MOF hybrid composites with high porosity and stability through surface-selective ligand exchange. Chem Mater 30(23):8639–8649

    Article  CAS  Google Scholar 

  95. Marreiros J, Van Dommelen L, Fleury G, de Oliveira-Silva R, Stassin T, Iacomi P, Furukawa S, Sakellariou D, Llewellyn PL, Roeffaers M, Ameloot R (2019) Vapor-phase linker exchange of the metal-organic framework ZIF-8: a solvent-free approach to post-synthetic modification. Angew Chem Int Ed Engl 58(51):18471–18475

    Article  CAS  Google Scholar 

  96. Wu W, Su J, Jia M, Li Z, Liu G, Li W (2020) Vapor-phase linker exchange of metal-organic frameworks. Sci Adv 6(18):eaax7270-1–eaax7270-7

    Google Scholar 

  97. Feng L, Wang KY, Lv XL, Powell JA, Yan TH, Willman J, Zhou HC (2019) Imprinted apportionment of functional groups in multivariate metal-organic frameworks. J Am Chem Soc 141(37):14524–14529

    Article  CAS  Google Scholar 

  98. Han S-Y, Pan D-L, Chen H, Bu X-B, Gao Y-X, Gao H, Tian Y, Li G-S, Wang G, Cao S-L, Wan C-Q, Guo G-C (2018) A methylthio-functionalized-MOF photocatalyst with high performance for visible-light-driven H2 evolution. Angew Chem Int Ed 57(31):9864–9869

    Article  CAS  Google Scholar 

  99. Nguyen HTT, Tu TN, Nguyen MV, Lo THN, Furukawa H, Nguyen NN, Nguyen MD (2018) Combining linker design and linker-exchange strategies for the synthesis of a stable large-pore Zr-based metal-organic framework. ACS Appl Mater Inter 10(41):35462–35468

    Article  CAS  Google Scholar 

  100. Li T, Kozlowski MT, Doud EA, Blakely MN, Rosi NL (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135(32):11688–11691

    Article  CAS  Google Scholar 

  101. Liu C, Luo TY, Feura ES, Zhang C, Rosi NL (2015) Orthogonal ternary functionalization of a mesoporous metal-organic framework via sequential postsynthetic ligand exchange. J Am Chem Soc 137(33):10508–10511

    Article  CAS  Google Scholar 

  102. Liu L, Li L, Ziebel ME, Harris TD (2020) Metal-diamidobenzoquinone frameworks via post-synthetic linker exchange. J Am Chem Soc 142(10):4705–4713

    Article  CAS  Google Scholar 

  103. Geary J, Wong AH, **ao DJ (2021) Thermolabile cross-linkers for templating precise multicomponent metal-organic framework pores. J Am Chem Soc 143(27):10317–10323

    Article  CAS  Google Scholar 

  104. Feng L, Lv X-L, Yan T-H, Zhou H-C (2019) Modular programming of hierarchy and diversity in multivariate polymer/metal–organic framework hybrid composites. J Am Chem Soc 141(26):10342–10349

    Article  CAS  Google Scholar 

  105. Feng L, Yuan S, Li J-L, Wang K-Y, Day GS, Zhang P, Wang Y, Zhou H-C (2018) Uncovering two principles of multivariate hierarchical metal-organic framework synthesis via retrosynthetic design. ACS Cent Sci 4(12):1719–1726

    Article  CAS  Google Scholar 

  106. Wang K-Y, Feng L, Yan T-H, Qin J-S, Li C-X, Zhou H-C (2021) Morphology transcription in hierarchical MOF-on-MOF architectures. ACS Mater Lett 3(6):738–743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.-C. Z. acknowledges financial support from the Robert A. Welch Foundation through a Welch Endowed Chair to H.-C.Z. (A-0030) and the Qatar National Research Fund under Award No. NPRP9-377-1-080. K.T. acknowledges the U. S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0019902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Cai Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsu, YC., Wang, KY., Tan, K., Powell, J.A., Zhou, HC. (2024). Diversity Oriented Synthesis of Metal-Organic Frameworks. In: Wu, M., Gao, W., Li, L., Lu, Y., Liu, J.L. (eds) Advanced Materials for Multidisciplinary Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-39404-1_7

Download citation

Publish with us

Policies and ethics

Navigation