Virtual Elements for Thermo-mechanical Problems

  • Chapter
  • First Online:
Virtual Element Methods in Engineering Sciences

Abstract

Many engineering problems require an analysis that takes into account more than one field. These are known as coupled problems which can be split in two distinct categories. The first category relates to problems in which the physical domains overlap and coupling occurs via the differential equations of the different physical phenomena. In the second category problems are investigated in which coupling occurs only at the domain interfaces, like in fluid-structure interaction. Here we will concentrate on the first category. Examples are thermo-mechanical, phase field and electro-mechanical problems, among others. The single fields are governed by different physical models. In general, the behaviour of each field is influenced by the other fields that are present in the model. Additional complexity arises for the proper setup of numerical simulation procedures when the partial differential equations, describing the single fields, are of different type. Hence, coupled multi-field and multi-physics problems span on one side a vast area of applications and on the other side they are demanding with respect to discretizations and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The operator \( \mathbb {D}_\nabla ^{(3,1)} \) does not have to be computed explicitly when using automatic software generation as in Sect. 3.1.5.

References

  • Aldakheel, F. 2017. Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space. Continuum Mechanics and Thermodynamics 29 (6): 1207–1217.

    Article  MathSciNet  MATH  Google Scholar 

  • Aldakheel, F., and C. Miehe. 2017. Coupled thermomechanical response of gradient plasticity. International Journal of Plasticity 91: 1–24.

    Article  Google Scholar 

  • Aldakheel, F., B. Hudobivnik, and P. Wriggers. 2019. Virtual elements for finite thermo-plasticity problems. Computational Mechanics 64: 1347–1360.

    Article  MathSciNet  MATH  Google Scholar 

  • Anand, L., N.M. Ames, V. Srivastava, and S.A. Chester. 2009. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part i: Formulation. International Journal of Plasticity 25: 1474–1494.

    Article  MATH  Google Scholar 

  • Antonietti, P.F., G. Vacca, and M. Verani. 2022. Virtual element method for the navier-stokes equation coupled with the heat equation. ar**v:2205.00954

  • Argyris, J.H., and J.S. Doltsinis. 1981. On the natural formulation and analysis of large deformation coupled thermomechanical problems. Computer Methods in Applied Mechanics and Engineering 25: 195–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Bartels, A., T. Bartel, M. Canadija, and J. Mosler. 2015. On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials. Journal of the Mechanics and Physics of Solids 82: 218–234.

    Article  MathSciNet  Google Scholar 

  • Beirão da Veiga, L., A. Pichler, and G. Vacca. 2021. A virtual element method for the miscible displacement of incompressible fluids in porous media. Computer Methods in Applied Mechanics and Engineering 375: 113649.

    Google Scholar 

  • Berrone, S., and M. Busetto. 2022. A virtual element method for the two-phase flow of immiscible fluids in porous media. Computational Geosciences 26 (1): 195–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Böhm, C., B. Hudobivnik, M. Marino, and P. Wriggers. 2021. Electro-magneto-mechanically response of polycrystalline materials: Computational homogenization via the virtual element method. Computer Methods in Applied Mechanics and Engineering 375: 113775.

    Article  MathSciNet  MATH  Google Scholar 

  • Čanađija, M., and J. Mosler. 2011. On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. International Journal of Solids and Structures 48: 1120–1129.

    Google Scholar 

  • Cereceda, D., M. Diehl, F. Roters, D. Raabe, J.M. Perlado, and J. Marian. 2016. Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. International Journal of Plasticity 78: 242–265.

    Article  Google Scholar 

  • Cervera, M., C. Agelet De Saracibar, and M. Chiumenti. 1999. Thermo-mechanical analysis of industrial solidification processes. International Journal for Numerical Methods in Engineering 46 (9): 1575–1591.

    Google Scholar 

  • Chapuis, A., and J.H. Driver. 2011. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Materialia 59 (5): 1986–1994.

    Article  Google Scholar 

  • Cottrell, J.A., T.J.R. Hughes, and Y. Bazilevs. 2009. Isogeometric analysis: Toward integration of CAD and FEA. New York: Wiley.

    Book  MATH  Google Scholar 

  • Dhanush, V., and S. Natarajan. 2019. Implementation of the virtual element method for coupled thermo-elasticity in abaqus. Numerical Algorithms 80 (3): 1037–1058.

    Article  MathSciNet  MATH  Google Scholar 

  • Hallquist, J.O. 1984. Nike 2d: An implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids. Technical Report Rept. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore, CA.

    Google Scholar 

  • Hudobivnik, B., F. Aldakheel, and P. Wriggers. 2018. Low order 3d virtual element formulation for finite elasto-plastic deformations. Computational Mechanics 63: 253–269.

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes, T.J.R., J.A. Cottrell, and Y. Bazilevs. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194 (39–41): 4135–4195.

    Article  MathSciNet  MATH  Google Scholar 

  • Korelc, J., and S. Stupkiewicz. 2014. Closed-form matrix exponential and its application in finite-strain plasticity. International Journal for Numerical Methods in Engineering 98: 960–987.

    Article  MathSciNet  MATH  Google Scholar 

  • Korelc, J., and P. Wriggers. 2016. Automation of finite element methods. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Korelc, J., U. Solinc, and P. Wriggers. 2010. An improved EAS brick element for finite deformation. Computational Mechanics 46: 641–659.

    Article  MATH  Google Scholar 

  • Lion, A. 2000. Constitutive modelling in finite thermoviscoplasticity: A physical approach based on nonlinear rheological models. International Journal of Plasticity 16 (5): 469–494.

    Article  MATH  Google Scholar 

  • Liu, X., R. Li, and Z. Chen. 2019. A virtual element method for the coupled stokes-darcy problem with the beaver-joseph-saffman interface condition. Calcolo 56 (4): 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Martins, J., D. Neto, J. Alves, M. Oliveira, H. Laurent, A. Andrade-Campos, and L. Menezes. 2017. A new staggered algorithm for thermomechanical coupled problems. International Journal of Solids and Structures 122: 42–58.

    Article  Google Scholar 

  • Miehe, C., J. Méndez Diez, S. Göktepe, and L. Schänzel. 2011. Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory. International Journal of Solids and Structures 48: 1799–1817.

    Google Scholar 

  • Simo, J.C. 1988a. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part i. Continuum formulation. Computer methods in applied mechanics and engineering 66 (2): 199–219.

    Google Scholar 

  • Simo, J.C. 1998b. Numerical analysis and simulation of plasticity. In Handbook of numerical analysis, vol. 6, ed. P.G. Ciarlet and J.L. Lions, 179–499. North-Holland.

    Google Scholar 

  • Simo, J.C., and C. Miehe. 1992. Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Computer Methods in Applied Mechanics and Engineering 98: 41–104.

    Article  MATH  Google Scholar 

  • Simo, J.C., R.L. Taylor, and K.S. Pister. 1985. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering 51: 177–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Stainier, L., and M. Ortiz. 2010. Study and validation of thermomechanical coupling in finite strain visco-plasticity. International Journal of Solids and Structures 47: 704–715.

    Article  MATH  Google Scholar 

  • Stainier, L., A. Cuitino, and M. Ortiz. 2002. A micromechanical model of hardening, rate sensitivity and thermal softening in bcc single crystals. Journal of the Mechanics and Physics of Solids 50 (7): 1511–1545.

    Article  MATH  Google Scholar 

  • Wriggers, P., C. Miehe, M. Kleiber, and J. Simo. 1989. On the thermomechanical treatment of necking problems a, finite element solution. In Proceedings of COMPLAS II, ed. D.R.J. Owen, E. Hinton and E. Onate. Swansea: Pineridge Press.

    Google Scholar 

  • Wriggers, P. 2008. Nonlinear finite elements. Berlin, Heidelberg, New York: Springer.

    MATH  Google Scholar 

  • Wriggers, P., and B. Hudobivnik. 2017. A low order virtual element formulation for finite elasto-plastic deformations. Computer Methods in Applied Mechanics and Engineering 327: 459–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Wriggers, P., and J. Korelc. 1996. On enhanced strain methods for small and finite deformations of solids. Computational Mechanics 18: 413–428.

    Article  MATH  Google Scholar 

  • Wriggers, P., and S. Reese. 1996. A note on enhanced strain methods for large deformations. Computer Methods in Applied Mechanics and Engineering 135: 201–209.

    Article  MATH  Google Scholar 

  • Wriggers, P., C. Miehe, M. Kleiber, and J. Simo. 1992. A thermomechanical approach to the necking problem. International Journal for Numerical Methods in Engineering 33: 869–883.

    Article  MATH  Google Scholar 

  • Wriggers, P., B. Reddy, W. Rust, and B. Hudobivnik. 2017. Efficient virtual element formulations for compressible and incompressible finite deformations. Computational Mechanics 60: 253–268.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, Q., L. Stainier, and M. Ortiz. 2006. A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. Journal of the Mechanics and Physics of Solids 54: 401–424.

    Article  MathSciNet  MATH  Google Scholar 

  • Zdebel, U., and T. Lehmann. 1987. Some theoretical considerations and experimental investigations on a constitutive law in thermoplasticity. International Journal of Plasticity 3 (4): 369–389.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O.C., and A.H.C. Chan. 1989. Coupled problems and their numerical solution. In Advances in computational nonlinear mechanics, ed. I.S. Doltsinis, 139–176. Springer Vienna.

    Google Scholar 

  • Zienkiewicz, O.C., and R.L. Taylor. 2000. The finite element method, vol. 1, 5th ed. Oxford, UK: Butterworth-Heinemann.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Wriggers .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wriggers, P., Aldakheel, F., Hudobivnik, B. (2024). Virtual Elements for Thermo-mechanical Problems. In: Virtual Element Methods in Engineering Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-39255-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39255-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39254-2

  • Online ISBN: 978-3-031-39255-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation