Plant, Bacterial, and Fungal Cell Wall-Degrading Enzymes

  • Chapter
  • First Online:
Molecular Physiology and Evolution of Insect Digestive Systems

Part of the book series: Entomology in Focus ((ENFO,volume 7))

  • 227 Accesses

Abstract

Most insects have plant material in their diets. Plant cell walls are broken by mastication or under the action of plant cell wall-degrading enzymes. Primary plant cell walls, as those of grasses, are composed of cellulose, pectin, and a network of polysaccharides named hemicelluloses. Secondary plant cell walls, as those in wood, are formed by lignocellulose, which are cellulose and hemicelluloses cross-linked by lignin. Insect cellulases are always β-1,4-endoglucanases of family GH9 or GH45. GH9 cellulases are widespread but were lost in dipterans and lepidopterans. Those of GH45 were acquired by beetles of the clade Phytophaga by horizontal transfer from fungi. Despite the existence of endogenous cellulases, in many insects microbiota cellulases also concur. Pectinases are particularly important in hemipterans to facilitate the insertion of their stylets in sap-conducting structures and to beetles that bore plant tissues. Hemicellulases hydrolyze hemicelluloses. They are licheninases, laminarinases, xylanases, and mannanases. Laminarinases are widespread among insects and hydrolyze β-1,3-glucans (laminarins) and some of them, like the one of Tenebrio molitor, also hydrolyze yeast β-1,3-1,6-glucans. Laminarinases are supposed to digest fungal cells in contaminated food (T. molitor) or callose (lepidopterans), which is deposited in response to wounding caused by the larvae and that impairs nutrient availability for the larvae. The degradation of lignin can only be efficiently performed by oxidative depolymerization catalyzed by laccases aided by redox mediators that usually are produced by microbes. Because of that, most insects only attack wood partly digested by microbes. Fungi are nutrients for detritivorous and stored product insects. Digestive chitinases lack chitin-binding domains, so they are efficient in digesting fungi cell walls but are harmless for the peritrophic membrane. Lysozyme catalyzes the hydrolysis of the peptidoglycan of the cell walls of many bacteria. In insects, midgut lysozyme active in low pH is characteristic of cyclorrhaphous dipterans, in agreement with the fact that most of their larvae feed largely on bacteria. Insect digestive cellulases were studied in detail, including crystallography and resolution of their 3D structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña R, Padilla BE, Flórez-Ramos CP et al (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci U S A 10:4197–4202

    Article  Google Scholar 

  • Arakane Y, Muthukrishan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67:201–216

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Zhu Q, Matsumiya M et al (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem Mol Biol 33:631–648

    Article  CAS  PubMed  Google Scholar 

  • Arakawa G, Watanabe H, Yamasaki HY et al (2009) Purification and molecular cloning of xylanases from the wood-feeding termite, Coptotermes formosanus Shiraki. Biosci Biotechnol Biochem 73:710–718

    Article  CAS  PubMed  Google Scholar 

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Stumpf PK, Conn EE (eds) Biochemistry of plants, vol 14. Academic, New York, pp 297–371

    Chapter  Google Scholar 

  • Bragatto I, Genta FA, Ribeiro AF et al (2010) Characterization of a β-1,3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to β-glucan-binding proteins. Insect Biochem Mol Biol 40:861–872

    Article  CAS  PubMed  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    Article  CAS  PubMed  Google Scholar 

  • Busch A, Kunert G, Heckel DG et al (2017) Evolution and functional characterization of CAZymes belonging to subfamily 10 of glycoside family 5 (GH5_10) in two species of phytophagous beetles. PLoS 12:e0184305

    Article  Google Scholar 

  • Busch A, Danchin EGJ, Pauchet Y (2019) Functional diversification of horizontally acquired glycoside hydrolase family 45 (GH45) proteins in Phytpphaga beetles. BMC Evol Biol 19:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Busconi M, Berzolla A, Chiappini E (2014) Preliminary data cellulase encoding genes in the xylophagous beetle, Hylotrupes bajulus (Linnaeus). Int Biodeter Biodegr 86:92–95

    Article  CAS  Google Scholar 

  • Callewaert L, Michiels C (2010) Lysozymes in the animal kingdom. J Biosci 35:127–160

    Article  CAS  PubMed  Google Scholar 

  • Cançado FC, Valério AA, Marana SR et al (2007) The crystal structure of a lysozyme c from housefly Musca domestica, the first structure of a digestive lysozyme. J Struct Biol 160:83–92

    Article  PubMed  Google Scholar 

  • Cançado FC, Chimoy Effio P, Terra WR et al (2008) Cloning, purification and comparative characterization of two digestive lysozymes from Musca domestica larvae. Braz J Med Biol Res 41:969–977

    Article  PubMed  Google Scholar 

  • Cançado FC, Barbosa ARG, Marana SR (2010) Role of the triad N46, S106 and T107 and the surface charges in the determination of the acidic pH optimum of digestive lysozyme from Musca domestica. Comp Biochem Physiol B 155:387–395

    Article  PubMed  Google Scholar 

  • Chang CJ, Wu CP, Lu SC et al (2012) A novel exo-cellulase from the white spotted longhorn beetle (Anoplophora malasiaca). Insect Biochem Mol Biol 42:629–636

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Coy MR, Salem TZ, Denton JS et al (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol 40:723–732

    Article  CAS  PubMed  Google Scholar 

  • Dittmer NT, Kanost MR (2010) Insect multicopper oxidases: diversity, properties, and physiological roles. Insect Biochem Mol Biol 40:179–188

    Article  CAS  PubMed  Google Scholar 

  • Dootstar H, McCollum TG, Mayer RT (1997) Purification and characterization of an endo-polygalaturonase from the gut of West Indies sugarcane rootstalk borer weevil (Diaprepes abbreviatus L.) larvae. Comp Biochem Physiol B 118:861–867

    Article  Google Scholar 

  • Eggert C, Temp U, Dean JF et al (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 39:144–148

    Article  Google Scholar 

  • Espinoza-Fuentes FP, Terra WR (1987) Physiological adaptations for digesting bacteria. Water fluxes and distribution of digestive enzymes in Musca domestica larval midgut. Insect Biochem 17:809–817

    Article  CAS  Google Scholar 

  • Fujita A (2004) Lysozymes in insects: what role do they play in nitrogen metabolism? Physiol Entomol 29:305–310

    Article  Google Scholar 

  • Fujita A, Shimizu I, Abe T (2001) Distribution of lysozyme and protease, and amino acid concentration in guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): possible digestion of symbiont bacteria transferred by trophallaxis. Physiol Entomol 26:116–123

    Article  CAS  Google Scholar 

  • Fujita A, Minamoto T, Shimizu I et al (2002) Molecular cloning of lysozyme-encoding cDNAs expressed in the salivary gland of a wood-feeding termite, Reticulitermes speratus. Insect Biochem Mol Biol 32:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Genta FA, Terra WR, Ferreira C (2003) Action pattern, specificity, lytic activities, and physiological role of five digestive β-glucanases isolated from Periplaneta americana. Insect Biochem Mol Biol 33:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Genta FA, Blanes L, Cristofoletti PT et al (2006) Purification, characterization and molecular cloning of the major chitinase from Tenebrio molitor larval midgut. Insect Biochem Mol Biol 36:789–800

    Article  CAS  PubMed  Google Scholar 

  • Genta FA, Dumont AF, Marana SR et al (2007) The interplay of processivity, substrate inhibition and a secondary substrate binding site of an insect exo-β-1,3-glucanase. Biochim Biophys Acta 1774:1070–1091

    Google Scholar 

  • Genta FA, Bragatto I, Terra WR et al (2009) Purification, characterization and sequencing of the major beta-1,3-glucanase from the midgut of Tenebrio molitor larvae. Insect Biochem Mol Biol 39:861–874

    Article  CAS  PubMed  Google Scholar 

  • Girard C, Jouanin L (1999a) Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle Phaedon cochleariae. Insect Biochem Mol Biol 29:1129–1142

    Article  CAS  PubMed  Google Scholar 

  • Girard G, Jouanin L (1999b) Molecular cloning of a gut-specific chitinase cDNA from the beetle Phaedon cochleariae. Insect Biochem Mol Biol 29:549–556

    Article  CAS  PubMed  Google Scholar 

  • Khadeni S, Guarino LA, Watanabe H et al (2002) Structure of an endoglucanase from termite, Nasutitermes takasogoensis. Acta Cryst D 58:653–658

    Article  Google Scholar 

  • Kim N, Choo YM, Lee KS et al (2008) Molecular cloning and characterization of a glycosyl family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comp Biochem Physiol B 150:368–376

    Article  PubMed  Google Scholar 

  • Kirsch R, Gramzow L, Theissen G et al (2014) Horizontal gene transfer and functional diversification of plant cell wall degrading polygalaturonases: key events in the evolution of herbivory in beetles. Insect Biochem Mol Biol 52:33–50

    Article  CAS  PubMed  Google Scholar 

  • Kleywegt GJ, Zou JY, Divne C et al (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 angstrom resolution, and a comparison with related enzymes. J Mol Biol 272:393–397

    Article  Google Scholar 

  • Klungness LM, Peng YS (1984a) Scanning electron microscope observations of pollen food in the alimentary canal of honeybees (Apis mellifera L. ). Can J Zool 62:1316–1319

    Article  Google Scholar 

  • Klungness LM, Peng YS (1984b) A histochemical study of pollen digestion in the alimentary canal of honeybees (Apis mellifera L.). J Insect Physiol 30:511–522

    Article  Google Scholar 

  • Kroon GH, van Praag JP, Velthuis HHW (1974) Osmotic shock as a prerequisite to pollen digestion in the alimentary tract of the worker bee. J Agric Res 13:177–181

    Google Scholar 

  • Lemos FJA, Terra WR (1991) Digestion of bacteria and the role midgut lysozyme in some insect larvae. Comp Biochem Physiol B 100:265–268

    Article  CAS  PubMed  Google Scholar 

  • Lemos FJA, Ribeiro AF, Terra WR (1993) A bacteria-digesting midgut lysozyme from Musca domestica (Diptera) larvae: purification, properties and secretory mechanism. Insect Biochem Mol Biol 23:533–541

    Article  CAS  Google Scholar 

  • Linder M, Teeri TT (1997) The roles and function of cellulose-binding domains. J Biotechnol 57:15–28

    Article  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H et al (2000) Evidence from multiple genes sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zen K-C, Muthukrishnan S et al (2002) Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol 32:1369–1382

    Article  CAS  PubMed  Google Scholar 

  • Markovic O, Janecek S (2001) Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Eng 14:615–631

    Article  CAS  PubMed  Google Scholar 

  • Matoub M, Rouland C (1995) Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp. Comp Biochem Physiol B 112:629–635

    Article  CAS  PubMed  Google Scholar 

  • McKenna DD, Scully ED, Pauchet Y et al (2016) The genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol 17:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonaka Y, Akieda D, Aizawa T, Watanabe N et al (2009) X-ray crystallography and structural stability of digestive lysozyme from cow stomach. FEBS J 276:2192–2200

    Article  CAS  PubMed  Google Scholar 

  • Pauchet Y, Freitak D, Heidel-Fischer HM et al (2009) Immunity or digestion. Glucanase activity in a glucan-binding protein family from Lepidoptera. J Biol Chem 285:2214–2224

    Google Scholar 

  • Pauchet Y, Kirsch R, Giraud S et al (2014) Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica. Insect Biochem Mol Biol 49:1–13

    Article  CAS  PubMed  Google Scholar 

  • Pettersen RC (1984) The chemical composition of wood. In: Rowell RM (ed) The chemistry of solid wood. Advances in chemistry series, vol 207. American Chemical Society, Washington, DC, pp 57–126

    Google Scholar 

  • Pollet A, Delcourt JA, Coutin CM (2010) Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Critic Rev Biotech 30:176–191

    Article  CAS  Google Scholar 

  • Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodemata. Protoplasma 201:30–37

    Article  CAS  Google Scholar 

  • Regel R, Matioli SR, Terra WR (1998) Molecular adaptation of Drosophila melanogaster lysozymes to a digestive function. Insect Biochem Mol Biol 28:309–319

    Article  CAS  PubMed  Google Scholar 

  • Rouvinen J, Bergfors T, Teeri T et al (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386

    Article  CAS  PubMed  Google Scholar 

  • Scott HG, Stojanovich CJ (1963) Digestion of Juniper pollen by Collembola. Flor Entomologist 16:189–191

    Article  Google Scholar 

  • Scully ED, Hoover K, Carlson JE et al (2013) Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle. BMC Genomics 14:1–26

    Article  Google Scholar 

  • Sethi A, Slack JM, Kovaleva ES et al (2013) Lignin-associated metagene expression in a lignocellulose-digesting termite. Insect Biochem Mol Biol 43:91–101

    Article  CAS  PubMed  Google Scholar 

  • Shelomi M, Heckel DG, Pauchet Y (2016a) Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea). Insect Biochem Mol Biol 71:1–11

    Article  CAS  PubMed  Google Scholar 

  • Shelomi M, Danchin EGJ, Heckel D et al (2016b) Horizontal gene transfer of pectinases ffrom bacteria preceded the diversification of stick and leaf insects. Sci Rep 6:1–9

    Article  Google Scholar 

  • Shen Z, Jacobs-Lorena M (1997) Characterization of a novel gut-specific chitinase gene from the human malaria vector Anopheles gambiae. J Biol Chem 272:28895–28900

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Reese JC, Reeck GR (1996) Purification and characterization of polygalacturonase from the rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). Insect Biochem Mol Biol 26:427–433

    Article  CAS  Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play. Comp Biochem Physiol B 103:775–784

    Article  Google Scholar 

  • Soni H, Kango N (2013) Microbial mannanases: properties and applications. In: Shukla P, Pletschke BI (eds) Advances in enzyme biotechnology. Springer, New Delhi, pp 41–56

    Google Scholar 

  • Tamaki FK, Pimentel AC, Dias AB et al (2014) Physiology of digestion and the molecular characterization of the major digestive enzymes from Periplaneta americana. J Insect Physiol 70:22–35

    Article  CAS  PubMed  Google Scholar 

  • Teller DC, Behnke CA, Pappan K et al (2014) The structure of rice weevil pectin methylesterase. Acta Crystallogr 70:1480–1484

    CAS  Google Scholar 

  • Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B 109:1–62

    Article  Google Scholar 

  • Terra WR, Ferreira C (2012) Biochemistry and molecular biology of digestion. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Academic/Elsevier, London, pp 365–418

    Chapter  Google Scholar 

  • Terra WR, Valentin A, Santos CD (1987) Utilization of sugars, hemicellulose, starch, protein, fat and minerals by Erinnyis ello larvae and digestive role of their midgut hydrolases. Insect Biochem 17:1143–1147

    Article  Google Scholar 

  • Terra WR, Barroso IG, Dias RO et al (2019) Molecular physiology of insect midgut. Adv Insect Physiol 56:117–163

    Article  Google Scholar 

  • Tokuda G (2019) Plant cell wall degradation in insects: recent progress on endogenous enzymes revealed by multi-omics technologies. Adv Insect Physiol 57:97–136

    Article  Google Scholar 

  • Ursic-Bedoya RJ, Nazzari H, Cooper D et al (2008) Identification and characteriazation of two novel lysozymes from Rhodnius prolixus, a vector of Chagas disease. J Insect Physiol 54:503–603

    Article  Google Scholar 

  • Van Herreghe JM, Michiels CW (2012) Invertebrate lysozymes: diversity and distribution, molecular mechanism and in vivo function. J Biosci 37:327–348

    Article  Google Scholar 

  • Vonk HJ, Western JRH (1984) Comparative biochemistry and physiology of enzymatic digestion. Academic, New York

    Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Noda H, Tokuda G et al (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  CAS  PubMed  Google Scholar 

  • Willis JD, Oppert B, Oppert C et al (2011) Identification, cloning, and expression of a GHF9 cellulose from Tribolium castaneum (Coleopter: Tenebrionidae). J Insect Physiol 57:300–306

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter R. Terra .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terra, W.R., Ferreira, C., Silva, C.P. (2023). Plant, Bacterial, and Fungal Cell Wall-Degrading Enzymes. In: Molecular Physiology and Evolution of Insect Digestive Systems. Entomology in Focus, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-39233-7_10

Download citation

Publish with us

Policies and ethics

Navigation