Quantum Nonlocality and Biological Coherence

  • Chapter
  • First Online:
Ultra-Weak Photon Emission from Biological Systems
  • 193 Accesses

Abstract

Novel effects of quantum-mechanical nonlocality are considered, which can supposedly regulate the coherent development and functioning of living organisms. In particular, the proposed quantum communication mechanism can explain some features of Gurwitsch’s mitogenetic effect. A nonlinear model of distant communications between metastable complex systems is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseev E et al. (2016) Results of search for daily and annual variations of 214Po half-life at the two year observation period. Phys. Part. Nucl. 47, 1803–1815

    Google Scholar 

  • Barlow P W et al (2010) Tree stem diameter fluctuates with lunar tide. Protoplasma 247, 25–43

    Article  PubMed  Google Scholar 

  • Bell J S (2004) Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bischof M (2003) in Integrative Biophysics, Popp F-A, Beloussov, L V (eds.) Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Blokhintsev D I (1973) Space and Time in the Microworld. Springer, Berlin

    Book  Google Scholar 

  • Bogachev S A et al. (2020) Search for of x-ray solar activity correlations with 55Fe, 60Co nucleus decay rates. J. Phys.: Conf. Series 1690, 012028–012035

    Google Scholar 

  • Cramer J (1986) Transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–66

    Article  CAS  Google Scholar 

  • Doebner H and Goldin G (1992) On general nonlinear Shrodinger equation admitting diffusion currents. Phys. Lett. A 162, 397–402

    Article  Google Scholar 

  • Doebner H and Goldin G (1996) Nonlinear gauge transformations in a family of nonlinear Schroedinger equations. Phys. Rev. A 54, 3764–3772

    Article  CAS  PubMed  Google Scholar 

  • Feynman P R (1961) Quantum Electrodynamics. Benjamin, Inc., N-Y

    Google Scholar 

  • Fischbach E et al (2009) Time dependent nuclear decay parameters. Space Sci. Rev. 145, 285–335

    Article  CAS  Google Scholar 

  • Frohlich H. (1968) Long-range coherence and energy storage in biological systems. Int. J. Quant. Chem. 2, 641–649

    Article  Google Scholar 

  • Gallep C (2014) Ultraweak, spontaneous photon emission from seedlings. Luminiscence 29, 963–974

    Article  Google Scholar 

  • Gallep C et al (2018) P.Barlow insights and contributions to study of tidal gravity variations. Ann. Botany 122, 757–766

    CAS  Google Scholar 

  • Gamow G (1928) Theory of radioactive nucleus α-decay. Zc. Phys. 51, 204–218

    Article  CAS  Google Scholar 

  • Gierhake E (1938) Diskussionsbemerkung. Arch. fur Gynak. 166, 249–255

    Google Scholar 

  • Gillis E J (2011) Causality, measuremnts and elementary interactions. Found. Phys. 41, 1757–1785

    Article  Google Scholar 

  • Hayes D K (1990) Chronobiology: its Role in Clinical Medicine, General Biology and Agriculture. John Wiley & Sons, N-Y

    Google Scholar 

  • Jauch J M (1968) Foundations of quantum mechanics. Addison-Wesly, Reading

    Google Scholar 

  • Jezler A and Bots P (1938) Uber die Fockungszahl in serum. Klin. Wschr. 17, 1140–1148

    Article  Google Scholar 

  • Josephson B.D., Pallikari-Viras F. (1991) Biological utilization of quantum nonlocality. Found. Phys. 21 197–208

    Article  Google Scholar 

  • Kaulbersz J et al (1958) Alterations of some blood reactions during total Sun eclipse. Proc. VIII Int. Austronaut. Cong. ed F Hecht Springer-Verlag, Berlin

    Google Scholar 

  • Kiepenheuer K O (1950) Zur beeinflussung der menschlichen blutserums durch die sonne. Naturwiss. 37 234–245

    Article  Google Scholar 

  • Koller T and Muller H (1938) Serologische Untersuchungen. Zbl. Gynak 62, 2642–2649

    Google Scholar 

  • Korotaev S M (2011) Causality and reversibility in irreversible time. Scientific Results Publishing, Irvine, Ca

    Google Scholar 

  • Korn G A, Korn T M (1968) Mathematical Handbook. McGrow Hill, N-Y

    Google Scholar 

  • Kucera O, Cifra M (2013) Cell-to-cell signaling through light. Cell Comm. Sign. 11, 87–98

    Article  Google Scholar 

  • Lubenets E R (1977) On unstable state decay problem in quantum mechanics. Theor. Math. Phys. 32 279–288

    Article  Google Scholar 

  • Mandel L, Wolf E (1995) Optical coherence and quantum optics. Cambridge University Press

    Book  Google Scholar 

  • Martin B R (2011) Nuclear and particle physics: An introduction. John Wiley & Sons, N-Y

    Google Scholar 

  • Mayburov S N (2021a) Nuclear decay oscillations and nonlinear quantum dynamics. Int. J. Theor. Phys. 60 630–639

    Article  CAS  Google Scholar 

  • Mayburov S N (2021b) Quantum nonlocality – possible cosmophysical effects. J.Phys.: Conf. Series 2081 012025–012034

    Google Scholar 

  • Mayburov S N (2022) Nonlinear quantum nonlocality and its cosmophysical tests. Submitted to Int. J. Mod. Phys. A; Ar**v:2211.03520

    Google Scholar 

  • McEven M J, Phylips L F (1975) Chemistry of the Atmosphere. Edward Arnold, N-Y

    Google Scholar 

  • Newton R R (1961) Dynamics of unstable systems and resonances. Ann. of Phys. 14 333–358

    Google Scholar 

  • Norsen T (2009) Local causality and completeness. Found. Phys. 39 273–294

    Article  Google Scholar 

  • Paul H (1982) Nonclassical optical photon production. Rev. Mod. Phys. 54 1061–1083

    Article  CAS  Google Scholar 

  • Peres A (2002) Quantum Theory: Concepts and Methods. Kluwer, N-Y

    Google Scholar 

  • Piccardi G (1962) The chemical basis of medical climatology. Charles Thomas, Springer

    Google Scholar 

  • Popp F-A (1998) in Biophotons, Chang J J, Fisch J, Popp F A (eds.) Kluwer, Netherlands

    Google Scholar 

  • Popp F-A et al (2002) Evidence of nonclassical (squeezed) light in biological systems. Physics Letters A 293 98–102

    Article  CAS  Google Scholar 

  • Primas H (1982) Chemistry and complementarity, Chimia 36 293–300

    CAS  Google Scholar 

  • Quickenden T I, Que Hee S S (1976) The spectral distribution of the luminescence emitted during growth of the yeast Saccharomyces cerevisiae and its relationship to mitogenetic radiation. Photochem. Photobiol. 23. V. 3. 201–204

    Google Scholar 

  • Sakurai J J (1994) Modern quantum mechanics. Addison-Wesly, Reading, MA

    Google Scholar 

  • Sarre H (1951) Solare einflusse auf die Takata-reaction. (1951) Medizin-Meteorol. Hefte 5, 25–31

    Google Scholar 

  • Scholkman F et al (2012) Analysis of daily variations in electrochemical reactions. J. Cond. Mat. Nucl. Sci 8, 37–49

    Google Scholar 

  • Shnoll S E (2009) Cosmophysical factors in stochastic processes, Svenska fysikarkivet, Stockholm (in Russian)

    Google Scholar 

  • Shnoll S E (1973) Conformational oscillations in protein macromolecules. In: Biol. and Biochemical Oscillators, Ed. by B. Chance, Acad. Press, N.Y., p. 667–669.

    Google Scholar 

  • Shnoll S E and Kolombet V A (1980) Macroscopic fluctuations and statistical spectral analysis and the states of aqueous protein solutions. In: Sov. Sci. Rev., Ed. by V. P. Sculachev, OPA, N.Y.

    Google Scholar 

  • Shnoll S E and Chetverikova E P (1975) Synchronous reversible alterations in enzymatic activity (conformational fluctuations) in actomyosin and creatine kinase preparations. Biochem. Biophys. Acta, 403, 8997–9006

    Google Scholar 

  • Stapp H P (1997) Nonlocal nature of quantum mechanics, Am. J. Phys. 65 300–311

    Article  Google Scholar 

  • Sudbery A (1986) Quantum mechanics and particles of nature. Cambridge university press, Cambridge

    Google Scholar 

  • Takata M (1951) Uber eine neue biologisch wirksome. Archiv fur Meteor., Geophys. Bioklimatologie B2, 486–508

    Google Scholar 

  • Troshichev O A et al. (2004) Variation of gravitation field and rhythms of biochemical processes Adv. Space Res. 34 1619–1624

    Google Scholar 

  • Vitiello G (2001) My Double Unveiled. John Benjamins, Amsterdam

    Book  Google Scholar 

  • Weinberg S (1989) Testing quantum mechanics nonlinearity. Ann. Phys. (N.Y.) 194, 336–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Mayburov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayburov, S. (2023). Quantum Nonlocality and Biological Coherence. In: Volodyaev, I., van Wijk, E., Cifra, M., Vladimirov, Y.A. (eds) Ultra-Weak Photon Emission from Biological Systems . Springer, Cham. https://doi.org/10.1007/978-3-031-39078-4_27

Download citation

Publish with us

Policies and ethics

Navigation