The Possible Functions of Electromagnetic Cell Communication

  • Chapter
  • First Online:
Ultra-Weak Photon Emission from Biological Systems
  • 201 Accesses

Abstract

Electromagnetic fields are part of the cybernetic organisation of cell dynamics. They play a major role in regulatory processes on different levels of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 348.14
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albensi BC (2019) What is nuclear factor Kappa B (NF-kB) doing in and to the mitochondrion? Front Cell Dev Biol. https://doi.org/10.3389/fcell.2019.00154

  • Albrecht-Buehler G (1992) Rudimentary form of cellular ‘vision’. Proc Natl Acad Sci USA 89: 8288–8292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beloussov LV (2007) Ultraweak photon emission as a tool for analysing collective processes in cells and develo** embryos. In: Beloussov LV, Voeikov VL, Martynyuk VS (eds) Biophotonics and Coherent Systems in Biology. New York Springer, p 139–157

    Chapter  Google Scholar 

  • Beloussov LV (1997) Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields. Int J Dev Biol 41:771–779

    CAS  PubMed  Google Scholar 

  • Beloussov LV (2015) Morphogenetic fields: History and relations to other concepts. In: Fels D, Cifra M, Scholkmann F (eds) Fields of the Cell, Research Signpost, Trivandrum, p 267–278

    Google Scholar 

  • Bokkon I, Salari V, Tuszinski JA, Antal I (2010) Estimation of the number of biophotons involved in the visual perception of a single-object image: Biophoton intensity can be considerably higher inside cells than outside. J Photochem Photobiol (B, Biology) 100(3):160–166

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR, Spudich JL (eds) (2005) Handbook of Photosensory Receptors. Wiley, Weinheim

    Google Scholar 

  • Cammaerts M-C, Debeir O, Cammaerts R (2011) Changes in Paramecium caudatum (Protozoa) near a switched-on GSM telephone. Electromagnetic Biol Med 30: 57–66

    Article  Google Scholar 

  • Choucrun N (1930) On the hypothesis of mitogenetic radiation. J Marine Biol Ass UK 17(1):65–74

    Article  Google Scholar 

  • Cifra M, Fields Z, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105: 223–246

    Article  CAS  PubMed  Google Scholar 

  • Colli L, Facchini U, Guidotti G, Dugnani-Lonati R, Orsenigo M, Sommariva O (1955) Further Measurements on the Bioluminescence of the Seedlings. Experientia 11:479–481

    Article  Google Scholar 

  • Cosic I, Caceres JLH, Cosic D (2015) Possibility to interfere with malaria parasite activity using specific electromagnetic frequencies. EPJ Nonlin Biomed Physics 2015. https://doi.org/10.1140/epjnbp/s40366-015-0025-1

  • Cunningham AL, Diefenbach RJ, Miranda-Saksena M, Bosnjak L, Kim M, Jones C, Dougla MW (2006) The cycle of human herpes simplex virus infection: Virus transport and immune control. J Infect Diseases 194:s11–18

    Article  CAS  Google Scholar 

  • Docoslis A, Espinoza LAT, Zhang B, Chen LL, Israel BA, Alexandridis P, Abbott NL (2007) Using nonuniform electric fields to accelerate the transport of viruses to surfaces from media of physiological ionic strength. Langmuir 23:3840–3848

    Article  CAS  PubMed  Google Scholar 

  • Duran F, Morokuma J, Fields C, Williams K, Adams DS, Levin M (2017) Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophys J 112:2231–2243

    Article  Google Scholar 

  • Esmaeilpour T, Fereydouni E, Dehghani F, Bókkon I, Panjehshahin M-R, Császár-nagy N, Ranjbar M, Salari V (2020) An experimental investigation of ultraweak photon emission from adult murine neural stem cells. Sci Rep 10:463. https://doi.org/10.1038/s41598-019-57352-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhadi A, Forsyth C, Banan A, Shaikh M, Engen P, Fields JZ, Keshavarzian A (2007) Evidence for non-chemical, non-electrical intercellular signaling in intestinal epithelial cells. Bioelectrochemistry 71:142–148

    Article  CAS  PubMed  Google Scholar 

  • Fels D (2005) The effect of food on microparasite transmission in the waterflea Daphnia magna. Oikos 109:360–366

    Article  Google Scholar 

  • Fels D (2009) Cellular communication through light. PLoS ONE 4:e5086

    Article  PubMed  PubMed Central  Google Scholar 

  • Fels D (2016) Physical non-contact communication between microscopic aquatic species: Novel experimental evidences for an interspecies information exchange. J Biophys, article ID 7406356. https://doi.org/10.1155/2016/7406356

  • Fels D (2012) Analogy between quantum and cell relations. Axiomathes 22:509–520. https://doi.org/10.1007/s10515-011-9156-x

    Article  Google Scholar 

  • Fels D (2017) Endogenous physical regulation of population density in the freshwater protozoan Paramecium caudatum. Sci Rep 7:13800

    Article  PubMed  PubMed Central  Google Scholar 

  • Fels D 2015) Electromagnetic cell communication and the barrier method. In: Fels D, Cifra M, Scholkmann F (eds) Fields of the Cell, Research Signpost, Trivandrum, p 149–162

    Google Scholar 

  • Fels D (2018) The double-aspect of life. Biol 7(2):28. https://doi.org/10.3390/biology7020028

    Article  CAS  Google Scholar 

  • Fels D, Cifra M, Scholkmann F (eds) (2015) Fields of the Cell. Research Signpost Trivandrum

    Google Scholar 

  • Funk RHW (2015) Endogenous electric fields as guiding cue for cell migration. Front Physiol 6:143. https://doi.org/10.3389/fphys.2015.00143

    Article  PubMed  PubMed Central  Google Scholar 

  • Funk RHW (2017) Does electromagnetic therapy meet an equivalent counterpart within the organism? J Transl Sci 3:1–6

    Google Scholar 

  • Galantsev VP, Kovalenko SG, Moltchanov AA, Prutskov VI (1993) Lipid peroxidation, low-level chemiluminescence and regulation of secretion in the mammary gland. Experientia 49:870–875

    Article  CAS  PubMed  Google Scholar 

  • Galle M, Neurohr R, Altmann G, Popp F-A, Nagl W (1991) Biophoton emission from Daphnia magna: A possible factor in the self-regulation of swarming. Experientia 47:457–460

    Article  Google Scholar 

  • Gurwitsch A (1923) Die Natur des spezifischen Erregers der Zellteilung. Arch Mikrosk Anat Entwicklungsmechanik 100:11–40

    Article  Google Scholar 

  • Gurwitsch A, Gurwitsch L (1926) Das Problem der Zellteilung physiologisch betrachtet. In: Gildmeister M, Goldschmid R, Neuberg C, Parnas J, Ruhland W (eds) Monographien aus dem Gesamtgebiet der Physiologie der Pflanzen und der Tiere. Springer, Berlin, p 1–221

    Google Scholar 

  • Gurwitsch AA (1988) A historical review of the problem of mitogenetic radiation. Experientia 44:545–550

    Article  CAS  PubMed  Google Scholar 

  • Idnurm A, Crosson S (2009) The photobiology of microbial pathogenesis. PLoS Pathog 5:e1000470

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaffe LF (2005) Marine plants may polarize remote Fucus eggs via luminescence. Luminescence 20:414–418

    Article  PubMed  Google Scholar 

  • Karin M, Ben-Neriah Y (2000) Phorsporylation meets Ubiquitination: The Control of NF-kB Activity. Ann Rev Immunol 18:621–663

    Article  CAS  Google Scholar 

  • Kozlov AA (2000) The role of natural radiation background in triggering cell division. In: Beloussov L, Popp F-A, Voeikov V, van Wijk R (eds) Biophotonics and Coherent Systems. Moscow University Press, p 241–248

    Google Scholar 

  • Laager F (2015) Light based cellular interactions: Hypotheses and perspectives. Front Phys 3:55

    Article  Google Scholar 

  • Levin M, Pezzulo G, Finkelstein JM (2017) Endogenous bioelectric signaling networks: Exploiting voltage gradients for control of growth and form. Annu Rev Biomed Eng 19:353–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin M (2014) Endogenous bioelectrical net-works store non-genetic patterning information during development and regeneration. J Physiol 592:2295–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madl P, Egot-Lemaire S (2015) The Field and the Photon from a physical point of view. In: Fels D, Cifra M, Scholkmann F (eds) Fields of the Cell. Research Signpost Trivandrum, p 29–54

    Google Scholar 

  • Markov MS (ed) (2015 Electromagnetic Fields in Biology and Medicine. Taylor & Francis, Boca Raton

    Google Scholar 

  • Mei W-P (1994) On the Biological Nature of Biophotons. In: Ho M-W, Popp F-A, Warnke U (eds) Bioelectrodynamics and biocommunication. Singapore World Scientific, p 269–291

    Google Scholar 

  • Murugan N J, Persinger M A, Karbowski L M, Blake T, Dotta BT (2020) Ultraweak Photon Emissions as a Non-Invasive, Early-Malignancy Detection Tool: An In Vitro and In Vivo Study. Cancers 12:1001. https://doi.org/10.3390/cancers12041001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patarroyo C, Laliberté J-F, Zheng H (2013) Hijack it, change it: how do plant viruses utilize the host secretory pathway for efficient viral replication and spread? Front Plant Sci 3:308, p 1–8. https://doi.org/10.3389/fpls.2012.00308

    Article  Google Scholar 

  • Pietak A (2015) Electromagnetic resonance and morphogenesis. In: Fels D, Cifra M, Scholkmann F (eds) Fields of the Cell. Research Signpost Trivandrum, p 303–320

    Google Scholar 

  • Prasad A, Pospisil P (2011) Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a toll for monitoring of lipid peroxidation in the cell membranes. PLoS ONE 6:e22345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad A, Pospíšil P (2015) The photon source within the cell. In Fields of the Cell, In: Fels D, Cifra M, Scholkmann F (eds) Fields of the Cell. Research Signpost Trivandrum, p 113–129

    Google Scholar 

  • Rastogi A, Pospisil P (2010) Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells. Plant Physiol Biochem 48:117–123

    Article  CAS  PubMed  Google Scholar 

  • Reiter T, Gabor D (1928) Zellteilung und Strahlung. Springer, Berlin

    Book  Google Scholar 

  • Rossi C, Foletti A, Magnani A, Lamponi S (2011) New perspectives in cell communication: Bioelectromagnetic interactions. Semin Cancer Biol 21:207–214

    Article  CAS  PubMed  Google Scholar 

  • Vaknin Y, Gan-Mor S, Bechar A, Ronen B, Eis D (2000) The role of electrostatic forces in pollination. Plant Syst Evol 222:133–142

    Article  Google Scholar 

  • Van der Horst MA, Key J, Hellingwerf KJ (2007) Photosensing in chemotrophic, non-phototropic bacteria: Let there be light sensing too. Trends Microbiol 15:554–562

    Article  PubMed  Google Scholar 

  • Van Wijk R, Kobayashi M, Van Wijk EPA (2007) Spatial characterization of human ultra-weak photon emission. In: Beloussov LV, Voeikov VL, Martynyuk VS (eds) Biophotonics and Coherent Systems in Biology. Springer, New York, p 177–189

    Chapter  Google Scholar 

  • Voeikov V V, Beloussov LV (2007) From mitogenetic rays to biophotons. In: Beloussov LV, Voeikov VL, Martynyuk VS (eds) Biophotonics and Coherent Systems in Biology. Springer, New York, p 1–16

    Google Scholar 

  • Volodyaev I, Beloussov LV (2015) Revisiting the mitogenetic effect of ultra-weak photon emission. Front Physiol. https://doi.org/10.3389/fphys.2015.00241

  • Saliev T, Mustapova Z, Kulsharova G, Bulanin D, Mikhalovsky S (2014) Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell Prolif 47:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savelev I, Myakishev-Rempel M (2020) Possible traces of resonance signaling in the genome. Prog Biophys Mol Biol 151:23–31. https://doi.org/10.1016/j.pbiomolbio.2019.11.010

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Mei W, Xu X (1994) Activation of neutrophils by a chemically separated but optically coupled neutrophil population undergoing respiratory burst. Experientia 50:963–968

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Wang C, Dai J (2010) Biophotons as neural communication signals demonstrated by in situ biophoton autography. Photochem Photobiol Sci 9(3):315–22

    Article  CAS  PubMed  Google Scholar 

  • Tzambazakis A (2015) The evolution of the biological field concept, In: Fels D, Cifra M, Scholkmann F (eds) Fields of the Cell. Research Signpost Trivandrum, p 1–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fels, D. (2023). The Possible Functions of Electromagnetic Cell Communication. In: Volodyaev, I., van Wijk, E., Cifra, M., Vladimirov, Y.A. (eds) Ultra-Weak Photon Emission from Biological Systems . Springer, Cham. https://doi.org/10.1007/978-3-031-39078-4_24

Download citation

Publish with us

Policies and ethics

Navigation