Chemiluminescence in Oxidation of Fatty Acids and Lipids

  • Chapter
  • First Online:
Ultra-Weak Photon Emission from Biological Systems

Abstract

Lipids (unsaturated lipids) are the main source of UPE in biological systems. The reasons for this are their relatively easy oxidizability, the closest possible arrangement of neighboring molecules (in membranes) and the presence of oxygen, as well as various catalysts for the onset of oxidative processes (enzymes of the respiratory chain, transition metals, etc.). Having begun, the process of lipid oxidation follows a free-radical chain mechanism, including the possibility of branching – i.e., explosive development. That is why a small start-up process is enough to oxidize many molecules and emit many photons.

This chapter contains a summary on UPE from lipids and fatty acid solutions, frequently used as model systems closest to them, as well as some basic data on lipid structure and distribution in the cells. It also includes very important data on UPE kinetics, obtained in an extensive series of works in the second half of the twentieth century, and almost never given in full at the present time (for this part, you may need to additionally read Chaps. 8 and 10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahnström G, Natarajan AT (1960) Chromosome Breakage induced by electrolytically produced Free Radicals. Nature 188 (4754):961-962. https://doi.org/10.1038/188961a0

    Article  PubMed  Google Scholar 

  • Alberts B, Johnson AD, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2015) Molecular Biology of the Cell. 6th Edition. Garland Science, Taylor and Francis Group, New York

    Google Scholar 

  • Badings НТ (1960). Nethese Milk Dairy J 14:215

    Google Scholar 

  • Bateman L, Gee G (1948) A kinetic investigation of the photochemical oxidation of certain non-conjugated olefins. Proc Roy Soc А 195 (1042):376-391

    CAS  Google Scholar 

  • Belyakov VA, Vasil'ev RF, Fedorova GF (1983) Chemiluminescence in the oxidation of unsaturated organic compounds in solution. B Acad Sci Ussr Ch+ 32 (12):2429–2437. https://doi.org/10.1007/BF00954469

  • Berkowitz J, Ellison GB, Gutman D (1994) Three methods to measure RH bond energies. The Journal of Physical Chemistry 98 (11):2744–2765. https://doi.org/10.1021/j100062a009

  • Bernheim F, Bernheim MLC, Wilbur KM (1948) The reaction between thiobarbituric acid and the oxidation products of certain lipides. J Biol Chem 174:257. https://pubmed.ncbi.nlm.nih.gov/18914082/

  • Bernheim F, Wilbur КM, Fitzgerald DB (1947) Studies on a new metabolite and its oxidation n the presence of ascorbic acid. J Gen Physiol 33:195. https://doi.org/10.1085/jgp.31.2.195

  • Bieri JG, Anderson AA (1960) Peroxidation of lipids in tissue homogenates as related to vitamin E. Arch Biochem and Biophys 90:105. https://doi.org/10.1016/0003-9861(60)90619-6

  • Brash AR (2000) Autoxidation of methyl linoleate: identification of the bis-allylic 11-hydroperoxide. Lipids 35 (9):947–952. https://doi.org/10.1007/s11745-000-0604-0

    Article  CAS  PubMed  Google Scholar 

  • Bray RC (1969) Electron paramagnetic resonance in biochemistry. Febs Lett 5:1. https://doi.org/10.1016/0014-5793(69)80278-4

  • Brzhevskaya ON, Nedelina OS (1969) Investigation of the energy-dependent processes in metabolizing mitochondria by the EPR method. Biophysics 14 (3):472–476

    Google Scholar 

  • Buzas SK, Gol'dshtein NI, Kochur NA, Ivanov II, Petrusevich YM (1970). In: Fiziko-khimicheskije mekhanizmy zlokachestvennogo rosta. Trudy MOIP [Physico-chemical mechamisms of malignant growth. MOIP Reports], vol 32. p 38

    Google Scholar 

  • Carpenter MP, Kitabchi AE, McCay PB, Caputto R (1959) The activation by tocopherol and other agents of ascorbic acid synthesis by liver homogenates from vitamin E-deficient rats. J Biol Chem 234:2814. https://pubmed.ncbi.nlm.nih.gov/13807882/

  • Cheremisina ZP, Olenov VI, Vladimirov Iu A (1972) Chemiluminescence coupled wtih the formation of lipid peroxides in biological membranes-VIII. Reactions of Fe++ and lipid peroxides at the stage of the "fast flash" of luminescence. Biophysics 17 (4):631–637

    Google Scholar 

  • Chetverikov AG, Kalmanson AE, Kharitonenkov IG, Blyumenfel'd LA (1964) Investigation by the EPR method of free radicals formed in biological specimens during enzymatic reactions. Biophysics 9 (1):6–13

    Google Scholar 

  • Corwin LM (1962) Studies on peroxidation in vitamin E-deficient rat liver homogenates. Arch Biochem and Biophys 97 (1):51

    Google Scholar 

  • Ellis GW (1950) Autoxidation of the fatty acids. 3. The oily products from elaidic and oleic acids. The formation of monoacyl derivatives of dihydroxystearic acid and of αβ-unsaturated keto acids. Biochem J 46:129. https://doi.org/10.1042/bj0460129

  • Ellis R, Gaddis AM, Currie GT (1961) Carbonyls in Qxidizing Fat. IV. The Role of Various Fatty Acid Components in Carbonyl Generation. J Food Sci 26:131. https://doi.org/10.1111/j.1365-2621.1961.tb00782.x

  • Emanuel NM, Knorre DG (1962) Course of chemical kinetics. Vyschaja shkola, Moscow

    Google Scholar 

  • Emanuel NM, L'askovkaya YN (1961) Inhibition of lipid oxidation processes (In Russian) [Tormozhenije protsessov okislenija zhirov]. Pishchepronizdat, Moscow

    Google Scholar 

  • Evans CD In: Chem. Symposium, 1961. Campbell Soup. Co., Camden, N. Y., p 123

    Google Scholar 

  • Farmer EH (1946) Peroxidation in relation to olefinic structure. Trans Faraday Soc 42:228. https://doi.org/10.1039/TF9464200228

  • Farmer EH, Bloomfield GF, Sundralingam A, Sutton DA (1942) The course and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Trans Faraday Soc 38:348. https://doi.org/10.1039/TF9423800348

  • Farmer EH, Koch HP, Sutton DA (1943) The course of autoxidation reactions in polyisoprenes and allied compounds. Part VII. Rearrangement of double bonds during autoxidation. J Chem Soc 541. https://doi.org/10.1039/JR9430000541

  • Farmer EH, Sutton DA (1943) The course of autoxidation reactions in polyisoprenes and allied compounds. Part IV. The isolation and constitution of photochemically-formed methyl oleate peroxide. J Chem Soc 119. https://doi.org/10.1039/JR9430000119

  • Farmer EH, Sutton DA (1946) The course of autoxidation reactions in polyisoprenes and allied compounds. Part XI. Double bond movement during the autoxidation of a mono-olefin. J Chem Soc 10. https://doi.org/10.1039/JR9460000010

  • Fedorova GF, Trofimov AV, Vasil’ev RF, Veprintsev TL (2007) Peroxy-radical-mediated chemiluminescence: mechanistic diversity and fundamentals for antioxidant assay. Arkivoc 8:163–215. http://dx.doi.org/10.3998/ark.5550190.0008.815

  • Fenell AJ, Skellon JH (1954) J Chem Soc:3414

    Google Scholar 

  • Forthney SR, Linn WS (1964) Role of ascorbate and cystein on swelling and lipid peroxidation in rat liver mitochondria. Arch Biochem and Biophys 104 (2):241

    Article  Google Scholar 

  • Frankel EN In: Symposium on Foods: Lipids and their Oxidation, Westport, Connecticut, 1962. AVI Publ. Co. Inc., p 51

    Google Scholar 

  • Frankel EN, Evans CD, Mc Connell DG, Selke E, Dutton HJ (1961) Autoxidation of Methyl Linolenate. Isolation and Characterization of Hydroperoxides. J Org Chem 26:4663. https://doi.org/10.1021/jo01069a112

  • Free radiacals in biology (In Russian) (1963). Inostrannaya literatura (Foreign literature), Moscow

    Google Scholar 

  • Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Bio 19:281–296. https://doi.org/10.1038/nrm.2017.138

    Article  CAS  Google Scholar 

  • Hashimoto S, Recknagel RO (1968) No chemical evidence of hepatic lipid peroxidation in acute ethanol toxicity. Exper Mol Pathol 8:225

    Google Scholar 

  • Hawkins EGE (1961) Organic Peroxides: Their Formation and Reactions. General and Industrial chemistry series D van Nostrand and Co, Princeton, New Jersey

    Google Scholar 

  • Haywood R (2013) Spin-Trap**: Theory and Applications. In: Roberts GCK (ed) Encyclopedia of Biophysics. pp 2447–2453. https://doi.org/10.1007/978-3-642-16712-6

  • Hochstein P, Ernster L (1963) Adp-Activated Lipid Peroxidation Coupled to the Tpnh Oxidase System of Microsomes. Biochem Biophys Res Commun 12:388–394

    Article  CAS  PubMed  Google Scholar 

  • Hochstein P, Nordenbrand K, Ernster L (1964) Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria. Biochem Biophys Res Commun 14:323–328

    Article  CAS  PubMed  Google Scholar 

  • Hochtein P, Ernster L (1963) ADP-activated lipid peroxidation coupled to the TPNH. Biochem and Biophys Res Communs 12 (6):388

    Article  Google Scholar 

  • Holman RT, Elmer ОC (1947). The rates of oxidation of unsaturated fatty acids and esters. J Amer Oil Chemists’ Soc 24:127. https://springer.longhoe.net/article/10.1007/BF02643258

  • Howard JA, Ingold KU (1968) Self-reaction of sec-butylperoxy radicals. Confirmation of the Russell mechanism. Journal of the American Chemical Society 90 (4):1056–1058. https://doi.org/10.1021/ja01006a037

    Article  CAS  Google Scholar 

  • Hunter FE, Jr., Gebicki JM, Hoffsten PE, Weinstein J, Scott A (1963) Swelling and lysis of rat liver mitochondria induced by ferrous ions. The Journal of biological chemistry 238 (2):828–835

    Article  CAS  PubMed  Google Scholar 

  • Hunter FE, Jr., Scott A, Hoffsten PE, Guerra F, Weinstein J, Schneider A, Schutz B, Fink J, Ford L, Smith E (1964a) Studies on the Mechanism of Ascorbate-Induced Swelling and Lysis of Isolated Liver Mitochandria. The Journal of biological chemistry 239:604–613

    Article  CAS  PubMed  Google Scholar 

  • Hunter FE, Jr., Scott A, Weinstein J, Schneider A (1964b) Effects of Phosphate, Arsenate, and Other Substances on Swelling and Lipid Peroxide Formation When Mitochondria Are Treated with Oxidized and Reduced Glutathione. The Journal of biological chemistry 239:622–630

    Article  CAS  PubMed  Google Scholar 

  • Ingram DJE (1969) Biological and biochemical applications of electron spin resonance Adam Hilger, London

    Google Scholar 

  • IUPAC (1997) Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). In: A. D. McNaught AW (ed). https://doi.org/10.1351/goldbook.

  • Ivanov II, Petrusevich YM (1965) Study of chemiluminescent spectra of unsaturated fatty acids and some biolipids (In Russian). Nauchnyje Doklady Vyschej Shkoly Biologicheskije nauki (Scientific Reports of higher schools Biological Sciences) 3 (1):81–83

    Google Scholar 

  • Ivanov II, Petrusevich YM (1966) Study of chemiluminescent spectra of unsaturated fatty acids and some biolipids (In Russian). In: Svobodnoradykal'nye protsessy v biologicheskih sistemah. Trudy MOIP [Free-Radical Processes in Biological Systems. MOIP Reports], vol 16. pp 13–15

    Google Scholar 

  • Janzen EG, Blackburn BJ (1968) Detection and identification of short-lived free radicals by an electron spin resonance trap** technique. J Am Chem Soc 90 (1):5909–5910. https://doi.org/10.1021/ja01023a051

    Article  CAS  Google Scholar 

  • Kalmanson AE (1963). In: Uspekhi biologicheskoy khimii, vol 5. AN SSSR Publishing House, Moscow, p 289

    Google Scholar 

  • Karnojitzky V, Vial C (1966) Prod Probl Pharm 21:245

    Google Scholar 

  • Kayushin LP, L'vov KM, Pulatova MK (1970) Issledovaniye paramagnitnyh tsentrov obluchennyh belkov (Study of paramagnetic centers of iradiatiated proteins). Nauka, Moscow

    Google Scholar 

  • Kern W, Willersin H (1955) Angew Chem 67:573

    Article  CAS  Google Scholar 

  • King G (1956) A quantitative study of the autoxidation products of oleic acid. J Chem Soc:587

    Google Scholar 

  • Knight HB, Colemann JE, Swern D (1951). J Amer Oil Chemists’s Soc 28:498

    Article  Google Scholar 

  • Knowles PF, Gibson JF, Pick FM, Bray RC (1969) Electron-spin-resonance evidence for enzymic reduction of oxygen to a free radical, the superoxide ion. The Biochemical journal 111 (1):53–58

    Google Scholar 

  • Kohn HI, Liversedge M (1944) On a new aerobic metabolite whose production by brain is inhibited by apomorphine, emetine, ergotamine, epinephrine, and menadione. J Pharmacol Methods 82:292

    Google Scholar 

  • Korchagina MV, Vladimirov YA In: Simpozium "Svobodnoradikal'nyje sostoyanija i ih rol' pri luchevom porazhenii i zlokachestvennom roste" (Symposium "Free-radical states and their role in radiation injury and malignant growth". 5–8 January". М., 1971, стр. 49, 5–8 January 1971. p 49

    Google Scholar 

  • Kozlov YP (1969). In: Kozlov YP (ed) Fiziko-khimija luchevogo porazhenija [Physics and Chemistry of radiation injury] (In Russian). Moscow University Press, Moscow, p 30

    Google Scholar 

  • Kudryashev YB (1960) Role of lipid radiotoxins in radiation toxic effect /Y.B. Kudryashov // Radiotoxins. - Moscow: Atomizdat, 1966. - Pp. 105–118

    Google Scholar 

  • Kudryashov YB, Mal'ts V, Goncharenko YN, Kakushkina ML, Lomsadze BA, Wen'-Dyuan' S, Syuey Yuj-hua, Dzhen'-lyan' C (1961) The toxic effect of oleic acid and its oxidation products. Radiobiologiya 1 (1):78–94

    CAS  Google Scholar 

  • L'vova OF (1967) Study of ultraweak luminescence in homogenates, pulps and suspensions of liver mitochondria: Cand. of Med. Sci. Dissertation. Moscow

    Google Scholar 

  • L’vova OF, Vladimirov YA (1966) Ultra-weak luminescence of mitochondria and its relation to biochemical processes (In Russian). Svobodnoradykal'nye protsessy v biologicheskih sistemah Trudy MOIP [Free-Radical Processes in Biological Systems MOIP Reports] 16:214–217

    Google Scholar 

  • Lemon HW, Kirby EM, Knapp RM (1951). Canad J Techol 29:523

    CAS  Google Scholar 

  • Lundberg WO In: Symposium on Foods: Lipids and their Oxidation, Oregon, 1961. AVI Publ. Co., Inc., p 31

    Google Scholar 

  • Machlin LJ In: Symposium on Foods. Lipids and their Oxidation, Oregon, 1961. p 255

    Google Scholar 

  • Marzoev AI, Roshchupkin DI, Vladimirov YA In: Simpozium "Svobodnoradikal'nyje sostoyanija i ih rol' pri luchevom porazhenii i zlokachestvennom roste" (Symposium "Free-radical states and their role in radiation injury and malignant growth", 5-8 January 1971. p 69

    Google Scholar 

  • Marzoev AI, Roshchupkin DI, Vladimirov YA (1973) Effect of UV light on biological membranes. II. Effect of irradiation on the chemiluminescence of mitochondria (In Russian). Biofizika+ 18 (2):258–263

    CAS  PubMed  Google Scholar 

  • McKnight RC, Hunter FE, Oehlert WH (1965) Mitochondrial membrane ghosts produced by lipid peroxidation induced by ferrous ion. I. Production and general morphology. J Biol Chem 240:3439. https://pubmed.ncbi.nlm.nih.gov/14321385/

  • Mellors A, Tappel AL (1966). Quinones and quinols as inhibitors of lipid peroxidation. Lipids 1:282. https://doi.org/10.1007/BF02531617

  • Miyamoto S, Martinez GR, Medeiros MHG, Di Mascio P (2003) Singlet molecular oxygen generated from lipid hydroperoxides by the Russell Mechanism: Studies using 18O-labeled linoleic acid hydroperoxide and monomol light emission measurements. Journal of the American Chemical Society 125 (20):6172–6179. https://doi.org/10.1021/ja029115o

    Article  CAS  PubMed  Google Scholar 

  • Nakano M, Takayama K, Shimizu Y, Tsuji Y, Inaba H, Migita T (1976) Spectroscopic Evidence for the Generation of Singlet Oxygen in Self-Reaction of sec-Peroxy Radicals. Journal of the American Chemical Society 98 (7):1974–1975. https://doi.org/10.1021/ja00423a060

    Article  CAS  Google Scholar 

  • Neyfakh EA (1963). In: Trudy 8 Mezhdunarodnogo Protivorakovogo Kongressa (Proceedings of 8th International Anticancer Congress), vol 2. Medgiz, Moscow, p 141

    Google Scholar 

  • Nilsson R (1969a). Biochim et biophys acta 184:237

    Google Scholar 

  • Nilsson R (1969b) On the role of free radicals and hydrogen peroxide in some biological oxidations. Roy. Univ., Stockholm

    Google Scholar 

  • O'Brien PJ (1969) Intracellular mechanisms for the decomposition of a lipid peroxide. I. Decomposition of a lipid peroxide by metal ions, heme compounds, and nucleophiles. Canad J Biochem 47:485. https://doi.org/10.1139/o69-076

  • Ottolenghi A (1959) Interaction of ascorbic acid and mitochondrial lipides. Arch Biochem and Biophys, 79:355

    Article  CAS  Google Scholar 

  • Perkins EQ (1960). Food Technol 14:508

    CAS  Google Scholar 

  • Polivoda AI, Sekamova EN (1962) [Ultraweak luminescence (450–700 mmk) of surviving and homogenized liver tissue in normal conditions and following the action of ionizing radiation]. Radiobiologiia 2 (6):801–810

    CAS  PubMed  Google Scholar 

  • Porter NA, Mills KA, Carter RL (1994) A Mechanistic Study of Oleate Autoxidation: Competing Peroxyl H-Atom Abstraction and Rearrangement. Journal of the American Chemical Society 116 (15):6690–6696. https://doi.org/10.1021/ja00094a026

    Article  CAS  Google Scholar 

  • Potapenko AJ, Roshchupkin DI, Kogon YA, Vladimirov YA (1972) Study of the effects of ultraviolet light on biomembranes. Registration of electroconductivity of biomolecular phospholipid membranes (In Russian). Doklady AN SSSR (Rep Acad Science USSR) 202 (4):882–885

    CAS  Google Scholar 

  • Pratt DA, Mills JH, Porter NA (2003) Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids. Journal of the American Chemical Society 125 (19):5801–5810. https://doi.org/10.1021/ja034182j

    Article  CAS  PubMed  Google Scholar 

  • Privett OS, Nickell EC (1959) Determination of Structure and Analysis of the Hydroperoxide Isomers of Autoxidized Methyl Oleate. Fette, Seifen, Anstrichmittel 61:842. https://doi.org/10.1002/lipi.19590611003

  • Recknagel RO, Ghoshal AK (1966) Lipoperoxidation as a vector in carbon tetrachloride hepatotoxicity. Lab Invest 15:132

    Google Scholar 

  • Roshchupkin DI, Marzoev AI, Vladimirov YA (1973) Effect of UV-radiation on biological membranes. I. Disruption of oxidative phosphorylation and changes in protein state during radiation of isolated mitochondria (In Russian). Biofizika 18 (1):83–88

    Google Scholar 

  • Santiago E, Guerra F, Macarulla JM (1968a). Effect of ascorbate on phospholipids during mitochondrial swelling and lysis. Rev esp fisiol 24:25

    Google Scholar 

  • Santiago E, Vazquez JJ, Guerra F, Macarulla JM (1968b). Rev esp fisiol 24:31

    CAS  PubMed  Google Scholar 

  • Saprin AN, Piette LH (1977) Spin trap** and its application in the study of lipid peroxidation and free radical production with liver microsomes. Archives of biochemistry and biophysics 180 (2):480–492. https://doi.org/10.1016/0003-9861(77)90063-7

    Article  CAS  PubMed  Google Scholar 

  • Sumarukov GV (1970) Okislitelnoje ravnovesije i radiochuvstvitel'nost' organizmov [Oxidation balance and radio-sensitivity of organisms] (In Russian). Atomizdat, Moscow

    Google Scholar 

  • Suslova TB (1971) Chemiluminescent study of lipid peroxidation in mitochondrion membranes and oleic acid solutions., 2 Med Inst, Moscow

    Google Scholar 

  • Suslova TB, Olenev VI, Korchagina MV, Vladimirov YA (1970) Chemiluminescence connected with the formation of lipid peroxides in biological membranes. IV. Role of the change of iron valency in these processes (In Russian). Biofizika 15 (4):622–628

    Google Scholar 

  • Suslova TB, Olenev VI, Vladimirov YA (1968) Role of iron ions in chemiluminescence of lipids (In Russian). Biofizika 13 (4):723–726

    Google Scholar 

  • Swern D, Colemann JE, Knight HB, Riccinti C, Willits CO, Eddy CR (1953). J Amer Chem Soc 75:3135

    Google Scholar 

  • Tallman KA, Rector CL, Porter NA (2009) Substituent effects on regioselectivity in the autoxidation of nonconjugated dienes. Journal of the American Chemical Society 131 (15):5635–5641. https://doi.org/10.1021/ja900040d

  • Tappel AL (1953). Oxidative fat rancidity in food products. I. Linoleate oxidation catalyzed by hemin, hemoglobin, and cytochrome c. Food Res 18:560. https://doi.org/10.1111/j.1365-2621.1953.tb17751.x

  • Tappel AL (1955). Unsaturated lipid oxidation catalyzed by hematin compounds. J Biol Chem 217:721. https://pubmed.ncbi.nlm.nih.gov/13271434/

  • Tappel AL, Zalkin H (1959) Lipid peroxidation in isolated mitochondria. Arch Biochem and Biophys 80:326. https://doi.org/10.1016/0003-9861(59)90258-9

  • Tarusov BN (1954) Fundamentals of biological effects of radioactive radiation. Medgiz, Moscow

    Google Scholar 

  • Tarusov BN (1957). Uspekhi Sovremennoi Biologii (Advances in Contemporary Biology) 44:173

    CAS  Google Scholar 

  • Tarusov BN (1962) Pervichnyje protsessy luchevogo porazhenija (Primary processes of radiation injury) (In Russian). Atomizdat, Moscow

    Google Scholar 

  • Tarusov BN, Polivoda AI, Zhuravlev AI (1961a) Detection of chemiluminescence in the liver of irradiated mice (In Russian). Radiobiologiya 1 (1):150–151

    CAS  Google Scholar 

  • Tarusov BN, Polivoda AI, Zhuravlev AI (1961b) Study on ultra-weak spontaneous luminescence of animal cells (in Russian). Biofizika (Russ) 6 (4):490–492

    Google Scholar 

  • Tarusov BN, Polivoda AI, Zhuravlev AI, Sekamova EN (1962) Ultraweak spontaneous luminescence in animal tissue (in Russian). Tsitologiia 4:696–699

    CAS  PubMed  Google Scholar 

  • Tarusov BN, Zhuravlev AI (1965) Biochemiluminescence of lipids (In Russian). In: Biolyuminestsentsiya. Trudy MOIP [Bioluminescence. MOIP Reports], vol 21. Nauka, Moscow, p 125

    Google Scholar 

  • Thiele EH, Huff JW (1960). Arch Biochem and Biophys 88:203

    Article  CAS  Google Scholar 

  • Timmins GS, Dos Santos RE, Whitwood AC, Catalani LH, Di Mascio P, Gilbert BC, Bechara EJH (1997) Lipid peroxidation-dependent chemiluminescence from the cyclization of alkylperoxyl radicals to dioxetane radical intermediates. Chemical research in toxicology 10 (10):1090–1096. https://doi.org/10.1021/tx970075p

    Article  PubMed  Google Scholar 

  • Vasil'ev RF, Karpukhin ON, Shlyapintokh VY (1961) An apparatus for measuring weak light fluxes (In Russian). Zhurnal Fizicheskoj Khimii [Journal of Physical Chemistry] 35 (2):461

    CAS  Google Scholar 

  • Vladimirov YA (1965) Fotokhimiya i lyuminescentsiya belkov [Photochemistry and luminescence of proteins] (In Russian). Nauka, Moscow

    Google Scholar 

  • Vladimirov YA (1967) Ultraweak luminescence accompanying biochemical reactions (English translation of "Sverkhslabyye svecheniya pri biokhimicheskikh reaktsiyah" USSR Academy of Sciences, Institute of Biological Physics. Izdatel'stvo "Nauka" Moscow, 1966). NASA, C.F.S.T.I., Springfield, Vermont

    Google Scholar 

  • Vladimirov YA, Archakov AI (1972) Lipid peroxidation in biological membranes [Perekisnoe okislenie lipidov v biologicheskikh membranakh] (In Russian). Nauka, Moscow

    Google Scholar 

  • Vladimirov YA, Gutenev PI, Kuznetsov PI (1973) Mathematical modelling of kinetics of chain oxidation of biomembane lipids in presence of Fe2 ions. Biofizika 18 (6):1024–1029

    Google Scholar 

  • Vladimirov YA, Korchagina MV, Olenev VI (1971) Chemiluminescence accompanied by the formation of lipid peroxides in biological membranes. VII. Reaction accompanied by luminescence (In Russian). Biofizika 16 (5):952–955

    Google Scholar 

  • Vladimirov YA, L'vova O F, Cheremisina ZP (1966) Ultra-weak luminescence of mitochondria and its relation to enzymic oxidation of lipids (In Russian). Biokhimiia 31 (3):507–515

    Google Scholar 

  • Vladimirov YA, L'vova OF (1964) Ultraweak luminescence and oxidative phosphorylation in mitochondria (In Russian). Biofizika 9 (4):506–507

    Google Scholar 

  • Vladimirov YA, L'vova OF (1965) Study of ultraweak luminescence of homogenates and liver pulp (In Russian). In: Frank GM (ed) Biofizika kletki [Biophysics of the Cell]. Nauka, Moscow, pp 74–83

    Google Scholar 

  • Vladimirov YA, Litvin FF (1963) The nature of ultraweak luminescence and the role of excited states of molecules in biological systems (In Russian). In: Biolyuminestsentsiya. Simpozium 3-6 iyunya 1963. Tezisy dokladov. [Bioluminescence. Symposium 3-6 June 1963. Summaries of Reports]. MOIP, Moscow, p 7

    Google Scholar 

  • Vladimirov YA, Litvin FF (1964) Fotobiologiya i spektral’nyye metody issledovaniya. Praktikum po obshchey biofizike. [Photobiology and Spectral Research Methods. Workbook on General Biophysics] (In Russian). vol 8. Vysshaya shkola, Moscow

    Google Scholar 

  • Vladimirov YA, Proskurnina EV, Izmailov DY, Sozarukova MM, Dzhadtoeva AA, Vladimirov GK, Machneva TV (2017) Sources and targets of free radicals in human blood. MAX Press, Moscow

    Google Scholar 

  • Vladimirov YA, Roshchupkin DI, Fesenko EE (1970a) Mechanism of ultraviolet radiation effects on proteins (In Russian). Biofizika 15 (2):254–264

    Google Scholar 

  • Vladimirov YA, Roshchupkin DI, Fesenko EE (1970b) Photochemical reactions in amino acid residues and inactivation of enzymes during U.V.-irradiation. A review. Photochem Photobiol 11 (4):227–246

    Google Scholar 

  • Vladimirov YA, Suslova TB, Olenev VI (1969a) Chemiluminescence associated with the formation of lipid peroxides in biological membranes. II. The role of Fe2+ in the development of chain oxidation of lipids and of ultra-weak luminescence (In Russian). Biofizika 14 (5):836–845

    Google Scholar 

  • Vladimirov YA, Suslova TB, Olenev VI, Cheremisina ZP (1969b). In: Mitokhondrii, Biokhimicheskiye funktsii v sisteme kletochnyh organell [Mitochondria. Biochemical functions in the system of cell organelles]. Nauka, Moscow, p 203

    Google Scholar 

  • Vladimirov YA, Tafel'shtein EE, Kozlov Iu P (1969c) [Effect of alpha-tocopherol on the chemiluminescence of mitochondria in the presence of Fe2+]. Doklady Akademii nauk SSSR 188 (5):1163–1165

    Google Scholar 

  • Voeikov VL (2010) Reactive oxygen species, water, photons and life. Riv Biol 103 (2–3):321–342

    PubMed  Google Scholar 

  • Voeikov VL, Novikov CN (1998) Peculiarities of luminol- and lucigenin-dependent photon emission from nondiluted human blood. Propagation in Tissues III, SPIE Proceedings 3194:328–333. https://doi.org/10.1117/12.301071

    Article  Google Scholar 

  • Wilbur KM, Bernheim F, Shapiro OW (1949) The thiobarbituric acid reagent as a test for the oxidation of unsaturated fatty acids by various agents. Arch Biochem and Biophys 24:305

    Google Scholar 

  • Wills ED (1965) Mechanism of lipid peroxide formation in tissues. Role of metals and haematin proteins in the catalysis of unsaturated fatty acids. Biochim et Biophys Acta 98 (2):238

    Google Scholar 

  • Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667. https://doi.org/10.1042/bj0990667

  • Wyard SJ (1968) Electron spin resonance spectroscopy of animal tissues. Proc Roy Soc A302:355. https://doi.org/10.1098/rspa.1968.0021

  • Yamazaki I, Piette LH (1963). The mechanism of aerobic oxidase reaction catalyzed by peroxidase. Biochim et biophys acta 77:47. https://doi.org/10.1016/0006-3002(63)90468-2

  • Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chemical reviews 111 (10):5944–5972. https://doi.org/10.1021/cr200084z

  • Zakharova NA, Sholina SI, Kruglyakova KY, Karpukhin ON, Ananchenko SN, Limanov VY, Torgov IV, Emanuel NM (1966). Izv Akad Nauk Otd khim nauk 456

    Google Scholar 

  • Zhuravlev AI (1960) The role of antioxidants in primary radiobiological effects (In Russian). In: Trudy simpoziuma “Rol” perekisey i kisloroda v nachal’nykh stadiyakh radiobiologicheskogo effekta” [Transactions of the Symposium “The Role of Peroxides and Oxygen in the Initial Stages of the Radiobiological Effect”]. USSR Academy of Sciences Publishing House, Moscow, p 55

    Google Scholar 

  • Zhuravlev AI (1962) Ultraweak chemiluminescence of antibiotics in lipids (In Russian). Antibiotiki 7 (11):1023

    CAS  PubMed  Google Scholar 

  • Zhuravlev AI (1963) Lipid model of radiation injury and radioprotective prevention. In: Primary mechanisms of biological effects of ionizing radiations, vol 7. Acad.Sc. USSR, Moscow, pp 93–101

    Google Scholar 

  • Zhuravlev AI (1965a) An anomaly of lipid chemiluminescence (In Russian). In: Biolyuminestsentsiya Trudy MOIP [Bioluminescence. MOIP Reports], vol 21. Nauka, Moscow, p 133

    Google Scholar 

  • Zhuravlev AI (1965b) Problems on bioluminescence (In Russian). In: Biolyuminestsentsiya Trudy MOIP [Bioluminescence. MOIP Reports], vol 21. Nauka, Moscow, p 184

    Google Scholar 

  • Zhuravlev AI, Filippov YN, Simonov VV (1965) The mechanism of chemiluminescence of lipids (In Russian). Biofizika (Russ) 10 (2 ):246

    CAS  Google Scholar 

  • Zhuravlev AI, Tarusov BN (1962) The mechanism of the protective antioxidant effect of some compounds containing sulfur (In Russian). Radiobiologiya 2 (2):177

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volodyaev, I., Vladimirov, Y.A. (2023). Chemiluminescence in Oxidation of Fatty Acids and Lipids. In: Volodyaev, I., van Wijk, E., Cifra, M., Vladimirov, Y.A. (eds) Ultra-Weak Photon Emission from Biological Systems . Springer, Cham. https://doi.org/10.1007/978-3-031-39078-4_11

Download citation

Publish with us

Policies and ethics

Navigation