Convex Optimization for Image Reconstruction

  • Chapter
  • First Online:
Coded Optical Imaging
  • 631 Accesses

Abstract

Convex optimization is a particular class of mathematical tool in decision sciences and in analyzing physical systems for finding a point that maximizes/minimizes an objective function (subjected to equality constraints and/or inequality constraints) through iterative computations. In this regard, recent developments in the mathematics and computational fields have sparked and positioned convex optimization as one of the most powerful tools to formulate and solve image inverse problems. This chapter briefly introduces state-of-the-art convex optimization methods for such reconstruction problems and presents the most successful approaches and their interconnections. Section 3.1 summarizes the basic concepts of convex optimization, focusing on the convexity conditions; Section 3.2 introduces the principal mathematical optimization tools for image/signal processing, focusing on the role of convex optimization. Section 3.3 discusses a variety of conventional convex optimization-based reconstruction algorithms used in the image processing community. The scope of these mathematical concepts, algorithms, and their applications are extended as needed in the remainder of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Boyd and L. Vandenberghe, Convex optimization, Cambridge: Cambridge university press, 2004.

    Book  Google Scholar 

  2. A. Dempster, N. Laird and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

    Google Scholar 

  3. D. Goldfarb and A. U. Idnani, “A numerically stable dual method for solving strictly convex quadratic programs,” Mathematical Programming, vol. 27, pp. 1–33, 1983.

    Article  Google Scholar 

  4. M. P. Friedlander and D. Orban, “A primal-dual regularized interior-point method for convex quadratic programs,” Mathematical Programming Computation, vol. 4, pp. 71–107, 2012.

    Article  Google Scholar 

  5. P. Gill and E. Wong, “Methods for convex and general quadratic programming,” Mathematical programming computation, vol. 7, no. 1, pp. 71–112, 2015.

    Article  Google Scholar 

  6. E. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE signal processing magazine, vol. 25, no. 2, pp. 21–30, 2008.

    Article  Google Scholar 

  7. J. Bioucas-Dias and M. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Transactions on Image processing, vol. 16, no. 12, pp. 2992–3004, 2007.

    Article  PubMed  Google Scholar 

  8. H. Jiang, S. Fels and J. Little, “A linear programming approach for multiple object tracking,” in IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, 2007.

    Google Scholar 

  9. O. Mangasarian and E. Wild, “Multiple instance classification via successive linear programming,” Journal of optimization theory and applications, vol. 137, no. 3, pp. 555–568, 2008.

    Article  Google Scholar 

  10. P. Luathep, A. Sumalee, W. Lam, Z. Li and H. Lo, “Global optimization method for mixed transportation network design problem: a mixed-integer linear programming approach,” Transportation Research Part B: Methodological, vol. 45, no. 5, pp. 808–827, 2011.

    Article  Google Scholar 

  11. J. Barzilai and J. Borwein, “Two-point step size gradient methods,” IMA journal of numerical analysis, vol. 8, no. 1, pp. 141–148, 1988.

    Article  Google Scholar 

  12. A. Beck, “First-Order Methods in Optimization,” SIAM, pp. 1-487, 2017.

    Google Scholar 

  13. A. Beck, “Introduction to nonlinear optimization: Theory, algorithms, and applications with MATLAB.,” Society for Industrial and Applied Mathematics, pp. 1–294, 2014.

    Google Scholar 

  14. L. Bottou, “Large-scale machine learning with stochastic gradient descent,” Proceedings of COMPSTAT'2010, pp. 177–186, 2010.

    Google Scholar 

  15. Y. S. L. a. X. J. Chen, “Distributed statistical machine learning in adversarial settings: Byzantine gradient descent,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 1, no. 2, pp. 1–25, 2017.

    Google Scholar 

  16. G. James, D. Witten, T. Hastie and R. Tibshirani, An introduction to statistical learning, New York: Springer, 2013.

    Book  Google Scholar 

  17. P. Wolfe, “Convergence conditions for ascent methods,” SIAM review, vol. 11, no. 2, pp. 226–235, 1969.

    Article  Google Scholar 

  18. Y. Dai, “On the nonmonotone line search,” Journal of Optimization Theory and Applications, vol. 112, no. 2, pp. 315–330, 2002.

    Article  Google Scholar 

  19. D. Bertsekas, Constrained optimization and Lagrange multiplier methods, Academic press, 2014, pp. 1–46.

    Google Scholar 

  20. E. Birgin and J. Martínez, Practical augmented Lagrangian methods for constrained optimization, Society for Industrial and Applied Mathematics, 2014.

    Google Scholar 

  21. S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

    Article  Google Scholar 

  22. N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and trends in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

    Article  Google Scholar 

  23. A. Bruckstein, D. Donoho and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM review, vol. 5, no. 1, pp. 34–81, 2009.

    Article  Google Scholar 

  24. P. Gill, A. Wang and A. Molnar, “The in-crowd algorithm for fast basis pursuit denoising,” IEEE Transactions on Signal Processing, vol. 59, no. 10, pp. 4595–4605, 2011.

    Article  Google Scholar 

  25. S. Chen, D. Donoho and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM review, vol. 43, no. 1, pp. 129–159, 2001.

    Article  Google Scholar 

  26. J. Bioucas-Dias, “Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors,” IEEE Transactions on Image Processing, vol. 15, no. 4, pp. 937–951, 2006.

    Article  PubMed  Google Scholar 

  27. I. Daubechies, M. Defrise and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 57, no. 11, pp. 1413–1457, 2004.

    Article  Google Scholar 

  28. M. Elad, “Why simple shrinkage is still relevant for redundant representations?,” IEEE transactions on information theory, vol. 52, no. 12, pp. 5559–5569, 2006.

    Article  Google Scholar 

  29. M. Figueiredo and R. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE Transactions on Image Processing, vol. 12, no. 8, pp. 906–916, 2003.

    Article  PubMed  Google Scholar 

  30. D. Donoho and J. Johnstone, “ Ideal spatial adaptation by wavelet shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

    Article  Google Scholar 

  31. J. Starck, M. Elad and D. Donoho, “Image decomposition via the combination of sparse representations and a variational approach,” IEEE transactions on image processing, vol. 14, no. 10, pp. 1570–1582, 2005.

    Article  PubMed  Google Scholar 

  32. J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE transactions on medical imaging, vol. 28, no. 4, pp. 585–594, 2008.

    Article  PubMed  Google Scholar 

  33. J. Prakash, A. Raju, C. Shaw, M. Pramanik and P. Yalavarthy, “ Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography,” Biomedical optics express, vol. 5, no. 5, pp. 1363–1377, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  34. L. Karlovitz, “Construction of nearest points in the l_p, p even and l_∞ norms,” Journal of Approximation Theory, vol. 3, no. 2, pp. 123–127, 1970.

    Article  Google Scholar 

  35. B. Rao, K. Engan, S. Cotter, J. Palmer and K. Kreutz-Delgado, “Subset selection in noise based on diversity measure minimization,” IEEE transactions on Signal processing, vol. 51, no. 3, pp. 760–770, 2003.

    Article  Google Scholar 

  36. M. Elad, Sparse and redundant representations: from theory to applications in signal and image processing (Vol. 2, No. 1, pp. 1094–1097), New York: Springer, 2010.

    Google Scholar 

  37. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009.

    Article  Google Scholar 

  38. S. Wright, R. Nowak and M. Figueiredo, “Sparse reconstruction by separable approximation,” IEEE Transactions on signal processing, vol. 57, no. 7, pp. 2479–2493, 2009.

    Article  Google Scholar 

  39. M. Figueiredo, R. Nowak and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE Journal of selected topics in signal processing, vol. 1, no. 4, pp. 586–597, 2007.

    Article  Google Scholar 

  40. M. Figueiredo and R. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE Transactions on Image Processing, vol. 12, no. 8, pp. 906–916, 2003.

    Article  PubMed  Google Scholar 

  41. Y. Nesterov, “A method for solving the convex programming problem with convergence rate $ Obigl (frac {1}{k^ 2} bigr) $,” Dokl. Akad. Nauk SSSR, vol. 269, pp. 543–547, 1983.

    Google Scholar 

  42. M. Zibetti, E. Helou, R. Regatte and G. Herman, “Monotone FISTA with variable acceleration for compressed sensing magnetic resonance imaging,” IEEE transactions on computational imaging, vol. 5, no. 1, pp. 109–119, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  43. S. Pejoski, V. Kafedziski and D. Gleich, “Compressed sensing MRI using discrete nonseparable shearlet transform and FISTA,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1566–1570, 2015.

    Article  Google Scholar 

  44. O. Jaspan, R. Fleysher and M. Lipton, “Compressed sensing MRI: a review of the clinical literature,” The British journal of radiology, vol. 88, no. 1056, p. 20150487, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  45. M. Hong, Y. Yu, H. Wang, F. Liu and S. Crozier, “Compressed sensing MRI with singular value decomposition-based sparsity basis,” Physics in Medicine & Biology, vol. 56, no. 19, p. 6311, 2011.

    Article  Google Scholar 

  46. J. Zhang, D. Zhao and W. Gao, “Group-based sparse representation for image restoration,” IEEE transactions on image processing, vol. 23, no. 8, pp. 3336–3351, 2014.

    Article  PubMed  Google Scholar 

  47. J. Huang, L. Guo, Q. Feng, W. Chen and Y. Feng, “Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data,” Physics in Medicine & Biology, vol. 60, no. 14, p. 5359, 2015.

    Article  Google Scholar 

  48. R. Aster, B. Borchers and C. Thurber, “Parameter estimation and inverse problems,” Elsevier, pp. 1–301, 2018.

    Google Scholar 

  49. L. Bottou, F. Curtis and J. Nocedal, “Optimization methods for large-scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

    Article  Google Scholar 

  50. J. Fan, F. Han and H. Liu, “Challenges of big data analysis,” National science review, vol. 1, no. 2, pp. 293–314, 2014.

    Article  PubMed  Google Scholar 

  51. J. Liang, P. Wang, L. Zhu and L. Wang, “Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution,” Nature communications, vol. 11, no. 1, pp. 1–10, 2020.

    Article  Google Scholar 

  52. Y. Lai, R. Shang, C. Côté, X. Liu, A. Laramée, F. Légaré, G. Luke and J. Liang, “Compressed ultrafast tomographic imaging by passive spatiotemporal projections,” Optics letters, vol. 46, no. 7, pp. 1788–1791, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  53. J. Barzilai and J. Borwein, “Two-point step size gradient methods,” IMA journal of numerical analysis, vol. 8, no. 1, pp. 141–148, 1988.

    Article  Google Scholar 

  54. S. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, “An interior-point method for large-scale $\ell_1 $-regularized least squares,” IEEE journal of selected topics in signal processing, vol. 1, no. 4, pp. 606–617, 2007.

    Article  Google Scholar 

  55. H. Arguello, H. Rueda, Y. Wu, D. Prather and G. Arce, “Higher-order computational model for coded aperture spectral imaging,” Applied optics, vol. 52, no. 10, pp. 12–21, 2013.

    Article  Google Scholar 

  56. H. Arguello and G. Arce, “Code aperture optimization for spectrally agile compressive imaging,” JOSA A, vol. 28, no. 11, pp. 2400–2413, 2011.

    Article  PubMed  Google Scholar 

  57. D. Han and X. Yuan, “A note on the alternating direction method of multipliers,” Journal of Optimization Theory and Applications, vol. 155, no. 1, pp. 227–238, 2012.

    Article  Google Scholar 

  58. S. Venkatakrishnan, C. Bouman and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” Proc. IEEE Global Conference on Signal and Information Processing, p. 945–948, 2013.

    Google Scholar 

  59. W. Dong, P. Wang, W. Yin, G. Shi, F. Wu and X. Lu, “Denoising prior driven deep neural network for image restoration,” IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 10, pp. 2305–2318, 2018.

    Article  PubMed  Google Scholar 

  60. S. V. S. V. Sreehari, K. L. Bouman, J. P. Simmons, L. F. Drummy and C. A. Bouman, “Multiresolution data fusion for super-resolution electron microscopy,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, 2017.

    Google Scholar 

  61. S. H. Chan, X. Wang and O. A. Elgendy, “Plug-and-play ADMM for image restoration: Fixed-point convergence and applications,” IEEE Transactions on Computational Imaging, vol. 3, no. 1, pp. 84–98, 2017.

    Article  Google Scholar 

  62. Y. Sun, B. Wohlberg and U. Kamilov, “An online plug-and-play algorithm for regularized image reconstruction,” IEEE Transactions on Computational Imaging, vol. 5, no. 3, pp. 395–408, 2019.

    Article  Google Scholar 

  63. G. Buzzard, S. Chan, S. Sreehari and C. Bouman, “Plug-and-play unplugged: Optimization-free reconstruction using consensus equilibrium,” SIAM Journal on Imaging Sciences, vol. 11, no. 3, pp. 2001-2020, 2018.

    Article  Google Scholar 

  64. A. Teodoro, J. Bioucas-Dias and M. Figueiredo, “Scene-adapted plug-and-play algorithm with convergence guarantees,” 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6.

    Google Scholar 

  65. S. Chan, X. Wang and O. Elgendy, “Plug-and-play ADMM for image restoration: Fixed-point convergence and applications,” IEEE Transactions on Computational Imaging, vol. 3, no. 1, pp. 84–98, 2016.

    Article  Google Scholar 

  66. C. Metzler, A. Maleki and R. Baraniuk, “From denoising to compressed sensing,” IEEE Transactions on Information Theory, vol. 62, no. 9, pp. 5117–5144, 2016.

    Article  Google Scholar 

  67. S. Sreehari, S. Venkatakrishnan, B. Wohlberg, G. Buzzard, L. Drummy, J. Simmons and C. Bouman, “Plug-and-play priors for bright field electron tomography and sparse interpolation,” IEEE Transactions on Computational Imaging, vol. 2, no. 4, pp. 408–423, 2016.

    Google Scholar 

  68. A. Danielyan, V. Katkovnik and K. Egiazarian, “BM3D frames and variational image deblurring,” IEEE Trans. Image Process., vol. 21, no. 4, p. 1715–1728, 2012.

    Article  PubMed  Google Scholar 

  69. K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Transactions on image processing, vol. 16, no. 8, pp. 2080–2095, 2007.

    Article  PubMed  Google Scholar 

  70. S. Baraha and A. Sahoo, “SAR image despeckling using plug-and-play ADMM,” IET Radar, Sonar & Navigation, vol. 14, no. 9, pp. 1297–1309, 2020.

    Article  Google Scholar 

  71. J. Zhang and B. Ghanem, “ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1828–1837, 2018.

    Google Scholar 

  72. J. **ang, Y. Dong and Y. Yang, “FISTA-net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging,” IEEE Transactions on Medical Imaging, vol. 40, no. 5, pp. 1329–1339, 2021.

    Article  PubMed  Google Scholar 

  73. M. Marquez, Y. Lai, X. Liu, C. Jiang, S. Zhang, H. Arguello and J. Liang, “Deep-Learning Supervised Snapshot Compressive Imaging Enabled by an End-to-End Adaptive Neural Network.,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 4, pp. 688–699, 2022.

    Article  Google Scholar 

Download references

Acknowledgments

This chapter was supported by the Sistema general de regalías Colombia under Grant BPIN 2020000100415, with UIS code 8933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Arguello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arguello, H., Marquez, M. (2024). Convex Optimization for Image Reconstruction. In: Liang, J. (eds) Coded Optical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-39062-3_3

Download citation

Publish with us

Policies and ethics

Navigation