Compressed Ultrafast Photography

  • Chapter
  • First Online:
Coded Optical Imaging
  • 658 Accesses

Abstract

Ultrafast optical imaging plays a crucial role in both fundamental scientific research and technology development. However, current high-speed imaging techniques suffer from various limitations, such as low imaging speeds, a limited number of frames acquired, and the need for strict event repetition (as is the case with the pump-probe method). These limitations have been addressed by a groundbreaking technology called compressed ultrafast photography (CUP). By integrating the streak camera technology and compressed sensing concept, CUP is capable of observing light-speed dynamics in real-time, recording at least 300 frames in a single shot, and achieving speeds of up to 10 trillion frames per second (Tfps). Unlike other imaging methods, CUP does not rely on active illumination and can achieve in principle 100% photon throughput. This highly flexible and scalable technology also offers high spatiotemporal resolution, ultrahigh phase sensitivity, and five-dimensional recording. CUP’s recent upgrade, compressed ultrafast spectral photography (CUSP), has pushed imaging speeds to 219 Tfps and expanded the number of frames to more than 1000. CUP and its family of technologies have the potential for exciting applications and significant discoveries in fields such as physics, chemistry, biology, materials science, nonlinear photonics, and laser optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOPDF-STAMP:

Acousto-optics Programmable Dispersive Filtering Assisted Sequentially Timed All-Optical Map** Photography [1]

CUP:

Compressed Ultrafast Photography [2]

CUSP:

Compressed Ultrafast Spectral Photography [3, 4]

CUST:

Compressed Ultrafast Spectral-Temporal Photography [5]

FINCOPA:

Framing Imaging based on Non-collinear Optical Parametric Amplification [6]

FISI:

Frequency-domain Integration Sequential Imaging [7]

FRAME:

Frequency Recognition Algorithm for Multiple Exposures [8]

HISAC:

High-speed Sampling Camera [9]

LIF-DH:

Light-in-flight Digital Holography [10]

OPR:

All-optical Photography with a Raster Principle [11]

SF-STAMP:

Sequentially Timed All-optical Map** Photography using Spectral Filtering [12]

SNAP:

Single-shot Non-synchronous Array Photography [13]

SS-FDT:

Single-shot Frequency Domain Tomography [14]

SS-FTOP:

Single-shot Femtosecond Time-resolved Optical Polarimetry [15]

STAMP:

Sequentially Timed All-optical Map** Photography [16]

THPM:

Time-resolved Holographic Polarization Microscopy [17]

TSFM:

Time and Spatial Frequency Multiplexing [18]

T-CUP:

Trillion-frame-per-second CUP [19]

UEDOI:

Ultrafast Electro-optical Deflection Imaging [20]

References

  1. Touil, M. et al. Acousto-optically driven lensless single-shot ultrafast optical imaging. Light: Science & Applications 11, 66 (2022).

    Article  CAS  Google Scholar 

  2. Gao, L., Liang, J., Li, C. & Wang, L. V. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 516, 74–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, P., Liang, J. & Wang, L. V. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nature Communications 11, 2091 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, P. & Wang, L. V. Single-Shot Reconfigurable Femtosecond Imaging of Ultrafast Optical Dynamics. Advanced Science n/a, 2207222 (2023).

    Google Scholar 

  5. Lu, Y., Wong, T. T. W., Chen, F. & Wang, L. Compressed ultrafast spectral-temporal photography. Phys. Rev. Lett. 122, 193904 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Xuanke, Z. et al. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification. Advanced Photonics 2, 1–12 (2020).

    Google Scholar 

  7. Zhu, Q. et al. FISI: frequency domain integration sequential imaging at 1.26×1013 frames per second and 108 lines per millimeter. Optics Express 30, 27429–27438 (2022).

    Article  PubMed  Google Scholar 

  8. Ehn, A. et al. FRAME: femtosecond videography for atomic and molecular dynamics. Light Sci Appl. 6, e17045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kodama, R., Okada, K. & Kato, Y. Development of a two-dimensional space-resolved high speed sampling camera. Review of Scientific Instruments 70, 625–628 (1999).

    Article  CAS  Google Scholar 

  10. Kakue, T. et al. Digital Light-in-Flight Recording by Holography by Use of a Femtosecond Pulsed Laser. IEEE Journal of Selected Topics in Quantum Electronics 18, 479–485 (2012).

    Article  CAS  Google Scholar 

  11. Zhu, Y. et al. All-optical high spatial-temporal resolution photography with raster principle at 2 trillion frames per second. Optics Express 29, 27298–27308 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki, T. et al. Sequentially timed all-optical map** photography (STAMP) utilizing spectral filtering. Optics Express 23, 30512–30522 (2015).

    Google Scholar 

  13. Sheinman, M., Erramilli, S., Ziegler, L., Hong, M. K. & Mertz, J. Flatfield ultrafast imaging with single-shot non-synchronous array photography. Optics Letters 47, 577–580 (2022).

    Article  PubMed  Google Scholar 

  14. Li, Z., Zgadzaj, R., Wang, X., Chang, Y.-Y. & Downer, M. C. Single-shot tomographic movies of evolving light-velocity objects. Nature Communications 5, 3085 (2014).

    Article  PubMed  Google Scholar 

  15. Wang, X. et al. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique. Applied Optics 53, 8395–8399 (2014).

    Article  PubMed  Google Scholar 

  16. Nakagawa, K. et al. Sequentially timed all-optical map** photography (STAMP). Nature Photonics 8, 695–700 (2014).

    Article  CAS  Google Scholar 

  17. Yue, Q.-Y., Cheng, Z.-J., Han, L., Yang, Y. & Guo, C.-S. One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena. Optics Express 25, 14182–14191 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Moon, J., Yoon, S., Lim, Y.-S. & Choi, W. Single-shot imaging of microscopic dynamic scenes at 5 THz frame rates by time and spatial frequency multiplexing. Optics Express 28, 4463–4474 (2020).

    Article  PubMed  Google Scholar 

  19. Liang, J., Zhu, L. & Wang, L. V. Single-shot real-time femtosecond imaging of temporal focusing. Light: Science & Applications 7, 42 (2018).

    Article  Google Scholar 

  20. Yang, C. et al. Single-Shot Receive-Only Ultrafast Electro-Optical Deflection Imaging. Physical Review Applied 13, 024001 (2020).

    Article  CAS  Google Scholar 

  21. El-Desouki, M. et al. CMOS Image Sensors for High Speed Applications. Sensors 9, 430–444 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fuller, P. W. W. An introduction to high speed photography and photonics. The Imaging Science Journal 57, 293–302 (2009).

    Article  Google Scholar 

  23. Gate intensified frame camera, http://www.cordin.com/framinggi.html (accessed: February, 2018).

  24. Imaging, S. Multi-channel SIMD Framing Camera, https://www.specialised-imaging.com/products/framing-cameras/simd (accessed: May, 2022).

  25. Balistreri, M. L. M., Gersen, H., Korterik, J. P., Kuipers, L. & van Hulst, N. F. Tracking Femtosecond Laser Pulses in Space and Time. Science 294, 1080–1082 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Zewail, A. H. Four-Dimensional Electron Microscopy. Science 328, 187 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Fang, R., Vorobyev, A. & Guo, C. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals. Light: Science & Applications 6, e16256 (2017).

    Article  CAS  Google Scholar 

  28. Liang, J. & Wang, L. V. Single-shot ultrafast optical imaging. Optica 5, 1113–1127 (2018).

    Google Scholar 

  29. Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Solli, D., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, Y. et al. Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging. Optics Letters 43, 5363–5366 (2018).

    Article  PubMed  Google Scholar 

  32. Rohrlich, D. & Aharonov, Y. Cherenkov radiation of superluminal particles. Physical Review A 66, 042102 (2002).

    Article  Google Scholar 

  33. Kodama, R. et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798–802 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, D. et al. Optical Coherence Tomography. Science 254, 1178–1181 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Durduran, T., Choe, R., Baker, W. B. & Yodh, A. G. Diffuse optics for tissue monitoring and tomography. Reports on Progress in Physics 73, 076701 (2010).

    Article  PubMed  Google Scholar 

  36. Lohse, D., Schmitz, B. & Versluis, M. Snap** shrimp make flashing bubbles. Nature 413, 477–478 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Gao, L. & Wang, L. V. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel. Physics Reports 616, 1–37 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dalong, Q. et al. Single-shot compressed ultrafast photography: a review. Advanced Photonics 2, 1–16 (2020).

    Google Scholar 

  39. Ding, P. et al. Single-shot polarization-resolved ultrafast map** photography. ar**%20photography.%20ar**v%3A2302.02100%20%282023%29."> Google Scholar 

  40. Liang, J. et al. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. Science Advances 3, e1601814 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guide to Streak Cameras, https://www.hamamatsu.com/resources/pdf/sys/SHSS0006E_STREAK.pdf (accessed: February, 2018).

  42. Ho, P. P., Katz, A., Alfano, R. R. & Schiller, N. H. Time response of ultrafast streak camera system using femtosecond laser pulses. Optics Communications 54, 57–62 (1985).

    Article  CAS  Google Scholar 

  43. Al, T. Test report on Hamamatsu streak camera C7700 (Photocathode type: HJ0134). (June 24, 2011).

    Google Scholar 

  44. Yang, C. et al. Optimizing codes for compressed ultrafast photography by the genetic algorithm. Optica 5, 147–151 (2018).

    Article  Google Scholar 

  45. Zhu, L. et al. Space-and intensity-constrained reconstruction for compressed ultrafast photography. Optica 3, 694–697 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hansen, P. C. Discrete Inverse Problems. (SIAM, 2010).

    Google Scholar 

  47. Wang, P. & Menon, R. Computational spectroscopy via singular-value decomposition and regularization. Optics Express 22, 21541–21550 (2014).

    Article  PubMed  Google Scholar 

  48. Bioucas-Dias, J. M. & Figueiredo, M. A. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Transactions on Image processing 16, 2992–3004 (2007).

    Article  PubMed  Google Scholar 

  49. Yang, C. et al. Improving the image reconstruction quality of compressed ultrafast photography via an augmented Lagrangian algorithm. Journal of Optics 21, 035703 (2019).

    Article  CAS  Google Scholar 

  50. Zhang, A. et al. Single-shot compressed ultrafast photography based on U-net network. Optics Express 28, 39299–39310 (2020).

    Article  PubMed  Google Scholar 

  51. Yang, C. et al. High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm. Photonics Research 9, B30–B37 (2021).

    Article  Google Scholar 

  52. Yao, J. et al. Total variation and block-matching 3D filtering-based image reconstruction for single-shot compressed ultrafast photography. Optics and Lasers in Engineering 139, 106475 (2021).

    Article  Google Scholar 

  53. **, C. et al. Weighted multi-scale denoising via adaptive multi-channel fusion for compressed ultrafast photography. Optics Express 30, 31157–31170 (2022).

    Article  PubMed  Google Scholar 

  54. Lei, X., Li, D. U. L. & Wu, S. Single-shot compressed ultrafast photography using a novel reconstruction algorithm based on plug-and-play frame. Journal of Optics 52, 332–338 (2023).

    Article  Google Scholar 

  55. Tsumori, M., Nagai, S., Harakawa, R., Sasaki, T. & Iwahashi, M. Contour-adaptive image restoration based on compressed sensing for ultrafast phenomena. Applied Physics Letters 117, 044102 (2020).

    Article  CAS  Google Scholar 

  56. Lei, X., Shahid, H. & Wu, S. A novel algorithm to improve image reconstruction quality for 2D streak camera. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 991, 165023 (2021).

    Article  CAS  Google Scholar 

  57. Yin, F. et al. High precision reconstruction for compressed femtosecond dynamics images based on the TVAL3 algorithm. Optical Materials Express 12, 4435–4443 (2022).

    Article  CAS  Google Scholar 

  58. Li, Y., Tian, J. & Li, D. D.-U. Theoretical investigations of a modified compressed ultrafast photography method suitable for single-shot fluorescence lifetime imaging. Applied Optics 60, 1476–1483 (2021).

    Article  PubMed  Google Scholar 

  59. Yao, J. et al. Multichannel-coupled compressed ultrafast photography. Journal of Optics 22, 085701 (2020).

    Article  CAS  Google Scholar 

  60. Yang, C. et al. Compressed ultrafast photography by multi-encoding imaging. Laser Physics Letters 15, 116202 (2018).

    Article  CAS  Google Scholar 

  61. Gosta, M. & Grgic, M. in ELMAR, 2010 PROCEEDINGS. 57-64 (IEEE, 2010).

    Google Scholar 

  62. Gruev, V., Van der Spiegel, J. & Engheta, N. Dual-tier thin film polymer polarization imaging sensor. Optics express 18, 19292–19303 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Liang, J., Wang, P., Zhu, L. & Wang, L. V. Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. Nature Communications 11, 5252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Femtosecond streak camera FESCA-200 datasheet, <https://www.electronicsdatasheets.com/manufacturers/hamamatsu/parts/c6138%2D%2Dfesca200-> (2015).

  65. Wang, P. & Menon, R. Computational multispectral video imaging [Invited]. Journal of the Optical Society of America A 35, 189–199 (2018).

    Article  Google Scholar 

  66. Wang, P. & Menon, R. Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics. Optica 2, 933–939 (2015).

    Article  Google Scholar 

  67. Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nature Methods 7, 848–854 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Beresna, M., Gecevičius, M. & Kazansky, P. G. Ultrafast laser direct writing and nanostructuring in transparent materials. Advances in Optics and Photonics 6, 293–339 (2014).

    Article  Google Scholar 

  69. Willner, A. E. et al. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics 7, 66–106 (2015).

    Article  Google Scholar 

  70. Herink, G., Jalali, B., Ropers, C. & Solli, D. R. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nature Photonics 10, 321 (2016).

    Article  CAS  Google Scholar 

  71. PĂ©gard, N. C. et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nature Communications 8, 1228 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhu, P., Jafari, R., Jones, T. & Trebino, R. Complete measurement of spatiotemporally complex multi-spatial-mode ultrashort pulses from multimode optical fibers using delay-scanned wavelength-multiplexed holography. Optics Express 25, 24015–24032 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Cao, F. et al. Single-shot spatiotemporal intensity measurement of picosecond laser pulses with compressed ultrafast photography. Optics and Lasers in Engineering 116, 89–93 (2019).

    Article  Google Scholar 

  74. Shen, Y. R. The principles of nonlinear optics. (Wiley, 2002).

    Google Scholar 

  75. Morgner, U. et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Optics Letters 24, 411–413 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photonics 4, 535–544 (2010).

    Article  CAS  Google Scholar 

  77. Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nature Photonics 8, 685–694 (2014).

    Article  CAS  Google Scholar 

  78. Wang, L., Ho, P. P., Liu, C., Zhang, G. & Alfano, R. R. Ballistic 2-D Imaging Through Scattering Walls Using an Ultrafast Optical Kerr Gate. Science 253, 769–771 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Royo, S. & Ballesta-Garcia, M. An Overview of Lidar Imaging Systems for Autonomous Vehicles. Applied Sciences 9 (2019).

    Google Scholar 

  80. Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany 58, 881–898 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Tyler, B. & Song, Z. Toward superfast three-dimensional optical metrology with digital micromirror device platforms. Optical Engineering 53, 112206 (2014).

    Article  Google Scholar 

  82. Liang, J., Gao, L., Hai, P., Li, C. & Wang, L. V. Encrypted three-dimensional dynamic imaging using snapshot time-of-flight compressed ultrafast photography. Scientific Reports 5, 15504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pengpeng, D. et al. Single-shot spectral-volumetric compressed ultrafast photography. Advanced Photonics 3, 045001 (2021).

    Google Scholar 

  84. Jiang, X. et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science 358, 344–347 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. VanWiggeren, G. D. & Roy, R. Communication with Chaotic Lasers. Science 279, 1198–1200 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nature Photonics 9, 529–535 (2015).

    Article  Google Scholar 

  87. Fan, L., Yan, X., Wang, H. & Wang Lihong, V. Real-time observation and control of optical chaos. Science Advances 7, eabc8448

    Google Scholar 

  88. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nature Photonics 6, 84–92 (2012).

    Article  CAS  Google Scholar 

  89. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Controllable spatiotemporal nonlinear effects in multimode fibres. Nature Photonics 9, 306–310 (2015).

    Article  CAS  Google Scholar 

  90. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatiotemporal mode-locking in multimode fiber lasers. Science 358, 94–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Akturk, S., Gu, X., Bowlan, P. & Trebino, R. Spatio-temporal couplings in ultrashort laser pulses. Journal of Optics 12, 093001 (2010).

    Article  Google Scholar 

  92. **g, J. C., Wei, X. & Wang, L. V. Spatio-temporal-spectral imaging of non-repeatable dissipative soliton dynamics. Nature Communications 11, 2059 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. MĂĽller, P., Garrett, C. & Osborne, A. Rogue waves. Oceanography 18, 66 (2005).

    Article  Google Scholar 

  94. Akhmediev, N. et al. Roadmap on optical rogue waves and extreme events. Journal of Optics 18, 063001 (2016).

    Article  Google Scholar 

  95. TeÄźin, U., Wang, P. & Wang, L. V. Real-time observation of optical rogue waves in spatiotemporally mode-locked fiber lasers. Communications Physics 6, 60 (2023).

    Article  Google Scholar 

  96. Ugur, T., Babak, R., Eirini, K., Demetri, P. & Christophe, M. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers. Advanced Photonics 2, 056005 (2020).

    Google Scholar 

  97. Hofer, M., Ober, M. H., Haberl, F. & Fermann, M. E. Characterization of ultrashort pulse formation in passively mode-locked fiber lasers. IEEE Journal of Quantum Electronics 28, 720–728 (1992).

    Article  CAS  Google Scholar 

  98. Matlis, N. H. et al. Snapshots of laser wakefields. Nature Physics 2, 749–753 (2006).

    Article  CAS  Google Scholar 

  99. Kim, T., Liang, J., Zhu, L. & Wang, L. V. Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot. Science Advances 6, eaay6200

    Google Scholar 

  100. Michel, A. P. M. Review: Applications of single-shot laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 65, 185–191 (2010).

    Article  Google Scholar 

  101. Hori, T. & Akamatsu, F. Laser-Induced Breakdown Plasma Observed using a Streak Camera. Japanese Journal of Applied Physics 47, 4759 (2008).

    Article  CAS  Google Scholar 

  102. Zhao, Y., Singha, S., Liu, Y. & Gordon, R. J. Polarization-resolved laser-induced breakdown spectroscopy. Optics Letters 34, 494–496 (2009).

    Article  PubMed  Google Scholar 

  103. Mills, E. The Specter of Fuel-Based Lighting. Science 308, 1263–1264 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nature Geoscience 1, 221–227 (2008).

    Article  CAS  Google Scholar 

  105. Johansson, K. O., Head-Gordon, M. P., Schrader, P. E., Wilson, K. R. & Michelsen, H. A. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361, 997–1000 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Martin, J. W. et al. π-Diradical Aromatic Soot Precursors in Flames. Journal of the American Chemical Society 143, 12212–12219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mishra, Y. N. et al. Single-pulse real-time billion-frames-per-second planar imaging of ultrafast nanoparticle-laser dynamics and temperature in flames. Light: Science & Applications 12, 47 (2023).

    Article  CAS  Google Scholar 

  108. Bauer, F. J., Daun, K. J., Huber, F. J. T. & Will, S. Can soot primary particle size distributions be determined using laser-induced incandescence? Applied Physics B 125, 109 (2019).

    Article  CAS  Google Scholar 

  109. Jiang, F. et al. Experimental study on measurement of flame temperature distribution using the two-color method. Journal of Thermal Science 11, 378–382 (2002).

    Article  Google Scholar 

  110. Berezin, M. Y. & Achilefu, S. Fluorescence Lifetime Measurements and Biological Imaging. Chemical Reviews 110, 2641–2684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Marcu, L. Fluorescence Lifetime Techniques in Medical Applications. Annals of Biomedical Engineering 40, 304–331 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bergmann, A. & Becker, W. Multiwavelength fluorescence lifetime imaging by TCSPC. Proc. SPIE 6372, 637204 (2006).

    Article  Google Scholar 

  113. Shrestha, S. et al. High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications. Optics Letters 35, 2558–2560 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ma, Y., Lee, Y., Best-Popescu, C. & Gao, L. High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proceedings of the National Academy of Sciences 118, e2004176118 (2021).

    Article  CAS  Google Scholar 

  115. Wang, P., Ebeling, C. G., Gerton, J. & Menon, R. Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic. Optics Communications 324, 73–80 (2014).

    Article  CAS  Google Scholar 

  116. Zhang, Y. et al. Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics. Nature Communications 13, 5247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ling, T. et al. Full-field interferometric imaging of propagating action potentials. Light: Science & Applications 7, 107 (2018).

    Article  CAS  Google Scholar 

  118. Ling, T. et al. High-speed interferometric imaging reveals dynamics of neuronal deformation during the action potential. Proceedings of the National Academy of Sciences 117, 10278–10285 (2020).

    Article  CAS  Google Scholar 

  119. Cohen, L. B., Keynes, R. D. & Hille, B. Light Scattering and Birefringence Changes during Nerve Activity. Nature 218, 438–441 (1968).

    Article  CAS  PubMed  Google Scholar 

  120. Llull, P. et al. Coded aperture compressive temporal imaging. Optics Express 21, 10526–10545 (2013).

    Article  PubMed  Google Scholar 

  121. Lai, Y. et al. Single-Shot Ultraviolet Compressed Ultrafast Photography. Laser & Photonics Reviews 14, 2000122 (2020).

    Article  CAS  Google Scholar 

  122. Liu, X., Zhang, S., Yurtsever, A. & Liang, J. Single-shot real-time sub-nanosecond electron imaging aided by compressed sensing: Analytical modeling and simulation. Micron 117, 47–54 (2019).

    Article  PubMed  Google Scholar 

  123. Qi, D. et al. Compressed Ultrafast Electron Diffraction Imaging Through Electronic Encoding. Physical Review Applied 10, 054061 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong V. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, P., Wang, L.V. (2024). Compressed Ultrafast Photography. In: Liang, J. (eds) Coded Optical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-39062-3_25

Download citation

Publish with us

Policies and ethics