The Influence of Thermomagnetometric Measurement Conditions on the Recorded Curie Temperature of Cobalt-Zinc Ferrite

  • Chapter
  • First Online:
Emerging Trends in Materials Research and Manufacturing Processes

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 104 Accesses

Abstract

The influence of the measurement atmosphere, heating and cooling rate on the Curie temperature of Co0.5Zn0.5Fe2O4 cobalt-zinc ferrite was studied by thermogravimetric analysis in a magnetic field. This technique allowed determining the temperature of ferrimagnet-paramagnet transition at Curie point of magnetic materials. The method of solid-phase synthesis was used to produce the Co–Zn ferrite. Curie temperature control of the ferrite was carried out by using a Netzsch STA 449C Jupiter thermal analyzer. Measurements were performed in the temperature range of 45–400 °C with heating (cooling) rates of 10, 20, and 50 K/min. The cell of analyzer was purged with air or nitrogen. According to thermomagnetometric analysis, the Curie temperature of Co–Zn ferrite are in the range of 171–188 °C, depending on the experimental conditions. It was shown, that the Curie temperature weakly depends on both the heating and cooling rate during thermogravimetric analysis in a magnetic field. However, this parameter depends on the measurement mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, H., Ji, P., Han, X.: Rheological phase synthesis of nanosized α-LiFeO2 with higher crystallinity degree for cathode material of lithium-ion batteries. Mater. Chem. Phys. 183, 152–157 (2016)

    Google Scholar 

  2. Kurian, M., Thankachan, S.: Structural diversity and applications of spinel ferrites core–Shell nanostructures. A review, Open. Ceram. 8, 100179 (2021)

    Google Scholar 

  3. Rani, R., Mujasam Batoo, K., Sharma, P., Anand, G., Kumar, G., Bhardwaj, S., Singh, M.: Structural, morphological and temperature dependent electrical traits of Co0.9Zn0.1InxFe2−xOa spinel nano-ferrites. Ceram. Int. 47, 30902–30910 (2021)

    Google Scholar 

  4. Gauns Dessai, P.P., Verenkar, V.M.S.: Synthesis and characterization of Ni0.7−xMnxZn0.3Fe2(C4H2O4)3·6N2H4 (x = 0.1 – 0.6): a precursor for the synthesis of nickel-manganese-zinc ferrites. J. Therm. Anal. Calorim. 142, 1399–1411 (2020)

    Google Scholar 

  5. Guo, J., Zhang, H., He, Z., Li, S., Li, Z.: Electrical properties and temperature sensitivity of Mo-modified MnFe2O4 ceramics for application of NTC thermistors. J. Mater. Sci: Mater. Electron. 29, 2491–2499 (2018)

    Google Scholar 

  6. Inoue, A., Kong, F.: Soft magnetic materials, reference module in materials science and materials engineering (Elsevier) (2020). https://doi.org/10.1016/B978-0-12-803581-8.11725-4

  7. Gao, Y., Wang, Z.: Microwave absorption and electromagnetic interference shielding properties of Li-Zn ferrite-carbon nanotubes composite. J. Magn. Magn. Mater. 528, 167808 (2021). https://doi.org/10.1016/j.jmmm.2021.167808

  8. Hajalilou, A., Kianvash, A., Lavvafi, H., Shameli, K.: Nanostructured soft magnetic materials synthesized via mechanical alloying: a review. J. Mater. Sci.: Mater. Electron. 29, 1690–1717 (2018). https://doi.org/10.1007/s10854-017-8082-0

    Article  Google Scholar 

  9. Sutradhar, S., Bandyopadhyay, A.: Modulation of magnetic and dielectric response of mullite coated Cu—substituted Co–Zn-ferrite multiphase nanocomposites. Mater. Sci. Eng: B 266, 115079 (2021)

    Article  Google Scholar 

  10. Gómez-Polo, C., Recarte, V., Cervera, L., Beato-López, J.J., López-García, J., Rodríguez-Velamazán, J.A., Ugarte, M.D., Mendonça, E.C., Duque, J.G.S.: Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications. J Magn. Magn. Mater. 465, 211–219 (2018)

    Article  Google Scholar 

  11. Andhare, D.D., Patade, S.R., Kounsalye, J.S., Jadhav, K.M.: Effect of Zn do** on structural, magnetic and optical properties of cobalt nanoparticles synthesized via. Co-precipitation method. Phys. B: Condens. Matter. 583, 412051 (2020)

    Article  Google Scholar 

  12. Muntean, C., Bozdog, M., Duma, S., Stefanescu, M.: Study on the formation of Co1xZnxFe2O4 system using two low-temperature synthesis methods. J. Therm. Anal. Calorim. 123, 117–126 (2016)

    Article  Google Scholar 

  13. Mondal, R., Dey, S., Majumder, S., Poddar, A., Dasgupta, P., Kumar, S.: Study on magnetic and hyperfine properties of mechanically milled Ni0.4Zn0.6Fe2O4 nanoparticles. J. Magn. Magn. Mater. 448, 135–145 (2018)

    Google Scholar 

  14. Azouaoui, A., El haoua, M., Salmi, S., Benzakour, N., Hourmatallah, A., Bouslykhane, K.: Structural and magnetic properties of Co–Zn ferrites: density functional theory calculations and high-temperature series expansions. Comput. Condens. Matter. 23, e00454 (2020)

    Google Scholar 

  15. Lanfredi, S., Genova, D.H.M., Brito, I., Lima, A., Nobre, M.: Structural characterization and Curie temperature determination of a sodium strontium niobate ferroelectric nanostructured powder. J. Solid State Chem. 184, 990–1000 (2011). https://doi.org/10.1016/j.jssc.2011.03.001

    Article  Google Scholar 

  16. **e, Y., Fan, J., Xu, L., Zhang, X., Xu, R., Zhu, Y., Tang, R., Wang, C., Ma, C., Pi, L., Zhang, Y., Yang, H.: Unambiguous determining the Curie point in perovskite manganite with second-order phase transition by scaling method. Phys. Lett. A. 383, 125843 (2019). https://doi.org/10.1016/j.physleta.2019.125843

    Article  Google Scholar 

  17. Chen, D., Harward, I., Baptist, J., Goldman, S., Celinski, Z.: Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method. J. Magn. Magn. Mater. 395, 350–353 (2015). https://doi.org/10.1016/j.jmmm.2015.07.076

    Article  Google Scholar 

  18. Lysenko, E.N., Nikolaev, E.V., Surzhikov, A.P., Nikolaeva, S.A.: Kinetic analysis of lithium-titanium ferrite formation from mechanically milled reagents. J. Therm. Anal. Calorim. 239, 122055 (2020). https://doi.org/10.1016/j.matchemphys.2019.122055

    Article  Google Scholar 

  19. Lysenko, E.N., Nikolaev, E.V., Vlasov, V.A., Surzhikov, A.P.: Microstructure and reactivity of Fe2O3–Li2CO3–ZnO ferrite system ball-milled in a planetary mill. Thermochim. Acta 664, 100–107 (2018). https://doi.org/10.1016/j.tca.2018.04.015

    Article  Google Scholar 

  20. Lysenko, E.N., Surzhikov, A.P., Vlasov, V.A., Malyshev, A.V., Nikolaev, E.V.: Thermal analysis study of solid-phase synthesis of zinc- and titanium-substituted lithium ferrites from mechanically activated reagents. J. Therm. Anal. Calorim. 122, 1347–1353 (2015). https://doi.org/10.1007/s10973-015-4849-9

    Article  Google Scholar 

  21. Fischer, H.: Calibration of micro-thermal analysis for the detection of glass transition temperatures and melting points. J. Therm. Anal. Calorim. 92, 625–630 (2008)

    Article  Google Scholar 

  22. Weddle, B.J., Robbins, S.A., Gallagher, P.K.: Further studies on the use of simultaneous TM/DTA to establish magnetic transition temperatures. Pure Appl. Chem. 67, 1843–1847 (1995)

    Article  Google Scholar 

  23. Luciani, G., Costantini, A., Branda, F., Scardi, P., Lanotte, L.: Thermal evolution of ferromagnetic metallic glasses. A study using TG(M) technique. J. Therm. Anal. Calorim. 72, 105–111 (2003)

    Google Scholar 

  24. Astafyev, A.L., Lysenko, E.N., Surzhikov, A.P., Nikolaev, E.V., Vlasov, V.A.: Thermomagnetometric analysis of nickel-zinc ferrites. J. Therm. Anal. Calorim. 142, 1775–1781 (2020)

    Article  Google Scholar 

  25. Gallagher, P.K.: Thermomagnetometry. J. Therm. Anal. Calorim. 49, 33–44 (1997)

    Article  Google Scholar 

  26. Lin, D.M., Wang, H.S., Lin, M.L., Lin, M.H., Wu, Y.C.: TG(M) and DTG(M) techniques and some of their applications on material study. J. Therm. Anal. Calorim. 58, 347–353 (1999)

    Article  Google Scholar 

  27. Arulmurugan, R., Vaidyanathan G., Sendhilnathan S., Jeyadevan, B.: Preparation and properties of temperature-sensitive magnetic fluid having Co0.5Zn0.5Fe2O4 and Mn0.5Zn0.5Fe2O4 nanoparticles. Phys. B: Condens. Mater. 368, 223–230 (2005)

    Google Scholar 

  28. Arulmurugan, R., Vaidyanathan G., Sendhilnathan S., Jeyadevan, B.: Thermomagnetic properties of Co1−xZnxFe2O4 (x = 0.1–0.5) nanoparticles. J. Magn. Magn. Mater. 303, 131–137 (2006)

    Google Scholar 

  29. Veverka, M., Jirák, Z., Kaman, K., Maryško, M., Pollert, E., Lančok, A., Dlouhá, M., Vrastislav, S.: Distribution of cations in nanosize and bulk Co–Zn ferrites. Nanotechnology 22, 345701 (2011). https://doi.org/10.1088/0957-4484/22/34/345701

    Article  Google Scholar 

  30. Ramana Reddy, A.V., Ranga Mohan, G., Ravinder, D., Boyanov, B.S.: High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J. Mater. Sci. 34, 3169–3176 (1999)

    Article  Google Scholar 

  31. Lee, S.W., Ryu, Y.G., Yang, K.J.: Magnetic properties of Zn2+ substituted ultrafine Co-ferrite grown by a sol-gel method. J. Appl. Phy. 91, 7610 (2002). https://doi.org/10.1063/1.1452215

    Article  Google Scholar 

  32. Lysenko, E.N., Astafyev, A.L., Vlasov, V.A., Surzhikov, A.P.: Analysis of phase composition of LiZn and LiTi ferrites by XRD and thermomagnetometric analysis. J. of Magn. Magn. Mater. 465, 457–461 (2018)

    Article  Google Scholar 

  33. Teo, M.L.S., Kong, L.B., Li, Z.W., Lin, G.Q., Gan, Y.B.: Development of magneto-dielectric materials based on Li-ferrite ceramics I. Densification behavior and microstructure development. Alloys Compd 459, 557–566 (2008)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation (Grant no. 19-72-10078-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy Nikolaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikolaev, E., Lysenko, E., Surzhikov, A., Bobuyok, S. (2023). The Influence of Thermomagnetometric Measurement Conditions on the Recorded Curie Temperature of Cobalt-Zinc Ferrite. In: Lysenko, E., Rogachev, A., Galtseva, O. (eds) Emerging Trends in Materials Research and Manufacturing Processes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-38964-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38964-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38963-4

  • Online ISBN: 978-3-031-38964-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation