A Parameterized Approximation Scheme for Generalized Partial Vertex Cover

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14079))

Included in the following conference series:

  • 742 Accesses

Abstract

Partial Vertex Cover is a well-studied generalization of the classic Vertex Cover problem, where we are given a graph \(G=(V,E)\) along with a non-negative integer k, and the goal is to cover the maximum number of edges possible by picking exactly k vertices. In this paper, we study a natural extension of Partial Vertex Cover to multiple color classes of the edges. In our problem, we are additionally given a partition of E into m color classes \(E_1,E_2,...,E_m\) and coverage requirements \(c_i\ge 1\) for all \(1\le i\le m\). The goal is to find a subset of vertices of size k that covers at least \(\beta \cdot c_i\) edges from each \(E_i\) and the contraction factor \(\beta \le 1\) is maximized.

As we prove in our paper, the multi-colored extension becomes very difficult to approximate in polynomial time to any reasonable factor. Consequently, we study the parameterized complexity of approximating this problem in terms of various parameters such as k and m. Our main result is a \((1-\epsilon )\)-approximation for the problem that runs in time \(f(k,m,\epsilon )\cdot \mathop {\hbox {poly}}\nolimits (|V|)\) for some computable function f. As we argue, our result is tight, in the sense that it is not possible to remove the dependence on k or m from the running time of such a \((1-\epsilon )\)-approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 114.39
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the term label coding rather than the traditional term “color coding” so that there is no confusion between this coding step and the colors of the edges in the problem Generalized Partial Vertex Cover we will address.

References

  1. Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 17–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48777-8_2

    Chapter  MATH  Google Scholar 

  2. Anegg, G., Angelidakis, H., Kurpisz, A., Zenklusen, R.: A technique for obtaining true approximations for k-center with covering constraints. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 52–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45771-6_5

    Chapter  Google Scholar 

  3. Bandyapadhyay, S., Banik, A., Bhore, S.: On fair covering and hitting problems. In: Kowalik, Ł, Pilipczuk, M., Rzążewski, P. (eds.) WG 2021. LNCS, vol. 12911, pp. 39–51. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86838-3_4

    Chapter  Google Scholar 

  4. Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k-center. In: 27th Annual European Symposium on Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  5. Bazgan, C., Hugot, H., Vanderpooten, D.: Implementing an efficient fptas for the 0–1 multi-objective knapsack problem. Eur. J. Oper. Res. 198(1), 47–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bera, S.K., Gupta, S., Kumar, A., Roy, S.: Approximation algorithms for the partition vertex cover problem. Theor. Comput. Sci. 555, 2–8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bläser, M.: Computing small partial coverings. Inf. Process. Lett. 85(6), 327–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bshouty, N.H., Burroughs, L.: Massaging a linear programming solution to give a 2-approximation for a generalization of the vertex cover problem. In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028569

    Chapter  Google Scholar 

  9. Buss, J.F., Goldsmith, J.: Nondeterminism within p*. SIAM J. Comput. 22(3), 560–572 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karthik, C.S., Laekhanukit, B., Manurangsi, P.: On the parameterized complexity of approximating dominating set. J. ACM 66(5), 33:1–33:38 (2019). https://doi.org/10.1145/3325116

  11. Chekuri, C., Inamdar, T., Quanrud, K., Varadarajan, K., Zhang, Z.: Algorithms for covering multiple submodular constraints and applications. J. Comb. Optim. 44(2), 979–1010 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chekuri, C., Quanrud, K., Zhang, Z.: On approximating partial set cover and generalizations. ar**v preprint ar**v:1907.04413 (2019)

  13. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding for matroid polytopes and applications. ar**v preprint ar**v:0909.4348 (2009)

  14. Chen, J., Kanj, I.A., **a, G.: Simplicity is beauty: improved upper bounds for vertex cover. Manuscript communicated by email (2005)

    Google Scholar 

  15. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  16. Dinur, I., Safra, S.: The importance of being biased. In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, pp. 33–42 (2002)

    Google Scholar 

  17. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_9

    Chapter  MATH  Google Scholar 

  18. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective knapsack problems. Manage. Sci. 48(12), 1603–1612 (2002)

    Article  MATH  Google Scholar 

  19. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005). https://doi.org/10.1007/11534273_5

    Chapter  Google Scholar 

  21. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory Comput. Syst. 41(3), 501–520 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hochba, D.S.: Approximation algorithms for np-hard problems. ACM Sigact News 28(2), 40–52 (1997)

    Article  Google Scholar 

  23. Inamdar, T., Varadarajan, K.: On the partition set cover problem. ar**v preprint ar**v:1809.06506 (2018)

  24. Jia, X., Sheth, K., Svensson, O.: Fair colorful k-center clustering. Math. Program. 192, 339–360 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM Trans. Algorithms (TALG) 5(4), 1–8 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2- \(\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Manurangsi, P.: A note on max \( k \)-vertex cover: faster FPT-AS, smaller approximate kernel and improved approximation. ar**v preprint ar**v:1810.03792 (2018)

  28. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)

    Article  Google Scholar 

  29. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: improved algorithms for connected vertex cover and tree cover. Theory Comput. Syst. 43(2), 234–253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4(2), 133–157 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

We thank anonymous reviewers for pointing out a simpler dynamic programming approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Mousavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bandyapadhyay, S., Friggstad, Z., Mousavi, R. (2023). A Parameterized Approximation Scheme for Generalized Partial Vertex Cover. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation