Geometric Spanning Trees Minimizing the Wiener Index

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14079))

Included in the following conference series:

  • 725 Accesses

Abstract

The Wiener index of a network, introduced by the chemist Harry Wiener [30], is the sum of distances between all pairs of nodes in the network. This index, originally used in chemical graph representations of the non-hydrogen atoms of a molecule, is considered to be a fundamental and useful network descriptor. We study the problem of constructing geometric networks on point sets in Euclidean space that minimize the Wiener index: given a set P of n points in \(\mathbb {R}^d\), the goal is to construct a network, spanning P and satisfying certain constraints, that minimizes the Wiener index among the allowable class of spanning networks.

In this work, we focus mainly on spanning networks that are trees and we focus on problems in the plane (\(d=2\)). We show that any spanning tree that minimizes the Wiener index has non-crossing edges in the plane. Then, we use this fact to devise an \(O(n^4)\)-time algorithm that constructs a spanning tree of minimum Wiener index for points in convex position. We also prove that the problem of computing a spanning tree on P whose Wiener index is at most W, while having total (Euclidean) weight at most B, is NP-hard.

Computing a tree that minimizes the Wiener index has been studied in the area of communication networks, where it is known as the optimum communication spanning tree problem.

This work was partially supported by Grant 2016116 from the United States – Israel Binational Science Foundation. Work by P. Carmi and O. Luwisch was partially supported by the Lynn and William Frankel Center for Computer Sciences. Work by J. Mitchell was partially supported by NSF (CCF-2007275) and by DARPA (Lagrange).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahamsen, M., Fredslund-Hansen, V.: Degree of convexity and expected distances in polygons. ar**v preprint ar**v:2208.07106 (2022)

  2. Bonchev, D.: The Wiener number: some applications and new developments. In: Topology in Chemistry, pp. 58–88 (2002)

    Google Scholar 

  3. Bonchev, D., Trinajstić, N.: Information theory, distance matrix, and molecular branching. J. Chem. Phys. 67(10), 4517–4533 (1977)

    Article  Google Scholar 

  4. Bose, P., Carmi, P., Chaitman-Yerushalmi, L.: On bounded degree plane strong geometric spanners. J. Discrete Algorithms 15, 16–31 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 234–246. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6_24

    Chapter  Google Scholar 

  6. Bose, P., Hill, D., Smid, M.H.M.: Improved spanning ratio for low degree plane spanners. Algorithmica 80(3), 935–976 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardinal, J., Collette, S., Langerman, S.: Local properties of geometric graphs. Comput. Geom. 39(1), 55–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carmi, P., Chaitman-Yerushalmi, L.: Minimum weight Euclidean t-spanner is np-hard. J. Discrete Algorithms 22, 30–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, S.-W., Knauer, C., Langerman, S., Smid, M.H.M.: Approximating the average stretch factor of geometric graphs. J. Comput. Geom. 3(1), 132–153 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Das, K.C., Gutman, I., Furtula, B.: Survey on geometric-arithmetic indices of graphs. Match (Mulheim an der Ruhr, Germany) 65, 595–644 (2011)

    Google Scholar 

  11. Dhamdhere, K., Gupta, A., Ravi, R.: Approximation algorithms for minimizing average distortion. Theory Comput. Syst. 39(1), 93–111 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dobrynin, A.A., Entringer, R., Gutman, I.: Wiener index of trees: theory and applications. Acta Applicandae Math. 66(3), 211–249 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Filtser, A., Solomon, S.: The greedy spanner is existentially optimal. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC), pp. 9–17 (2016)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA (1979)

    MATH  Google Scholar 

  15. Gonzalez, T.F.: Handbook of Approximation Algorithms and Metaheuristics, Chapter 59. Chapman & Hall/CRC, Boca Raton (2007)

    Book  Google Scholar 

  16. Graovac, A., Pisanski, T.: On the wiener index of a graph. J. Math. Chem. 8, 53–62 (1991)

    Article  MathSciNet  Google Scholar 

  17. Harary, F.: Graph Theory. Addison-Wesley, Boston (1969)

    Book  MATH  Google Scholar 

  18. Hu, T.C.: Optimum communication spanning trees. SIAM J. Comput. 3(3), 188–195 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson, D.S., Lenstra, J.K., Kan, A.R.: The complexity of the network design problem. Networks 8, 279–285 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kier, L.: Molecular Connectivity in Chemistry and Drug Research. Elsevier, Amsterdam (1976)

    Google Scholar 

  21. Knor, M., Škrekovski, R., Tepeh, A.: Mathematical aspects of Wiener index. Ars Math. Contemp. 11, 327–352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, X.Y., Wang, Y.: Efficient construction of low weighted bounded degree planar spanner. Int. J. Comput. Geom. Appl. 14(1–2), 69–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mekenyan, O., Bonchev, D., Trinajstić, N.: Structural complexity and molecular properties of cyclic systems with acyclic branches. Croat. Chem. Acta 56(2), 237–261 (1983)

    Google Scholar 

  24. Mohar, B., Pisanski, T.: How to compute the wiener index of a graph. J. Math. Chem. 2(3), 267 (1988)

    Article  MathSciNet  Google Scholar 

  25. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  26. Ronghua, S.: The average distance of trees. J. Syst. Sci. Complex. 6, 18–24 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Sitters, R.: Polynomial time approximation schemes for the traveling repairman and other minimum latency problems. SIAM J. Comput. 50(5), 1580–1602 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Trinajstić, N.: Mathematical and Computational Concepts in Chemistry. Ellis Horwood, Chichester (1986)

    Google Scholar 

  29. Weiszfeld, E., Plastria, F.: On the point for which the sum of the distances to n given points is minimum. Ann. Oper. Res. 167(1), 7–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69(1), 17–20 (1947)

    Article  Google Scholar 

  31. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A polynomial-time approximation scheme for minimum routing cost spanning trees. SIAM J. Comput. 29(3), 761–778 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, K., Liu, M., Gutman, I., Furtula, B.: A survey on graphs extremal with respect to distance-based topological indices. Match (Mulheim an der Ruhr, Germany) 71, 461–508 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karim Abu-Affash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abu-Affash, A.K., Carmi, P., Luwisch, O., Mitchell, J.S.B. (2023). Geometric Spanning Trees Minimizing the Wiener Index. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation