Design and Performance of a Cownose Ray-Inspired Robot for Underwater Exploration

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

This paper describes the design and experiments of a bioinspired robot imitating the swimming behavior of cownose rays. These creatures propel themselves by moving their flat and large pectoral fins, which generate a wave that pushes back the surrounding water, generating thrust through momentum conservation. The robot mimicking this motion features a stiff central body, which houses motors, batteries, and electronics and is equipped with flexible pectoral fins crafted from silicone rubber. Each fin is driven by a servomotor that propels a link inside the leading edge, allowing the wave motion to be recreated through the flexibility of the fins. To enhance maneuverability, two small, rigid caudal fins have also been added. The robot was designed, constructed, and tested, and the results indicated that the locomotion principle was effective, as the robot was capable of forward propulsion, left and right turns, and floating and diving maneuvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 58.84
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 69.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arastehfar, S., Chew, C.: Effects of root chord movement on thrust generation of oscillatory pectoral fins. Bioinspir. Biomimet. 16, 036009 (2021)

    Google Scholar 

  2. Bianchi, G., Cinquemani, S., Schito, P., Resta, F.: A numerical model for the analysis of the locomotion of a cownose ray. J. Fluids Eng. 144(031203) (2022)

    Google Scholar 

  3. British Standard 903: Methods of testing vulcanised rubber - Part 19 (1957)

    Google Scholar 

  4. Cai, Y., Bi, S., Li, G., Hildre, H., Zhang, H.: From natural complexity to biomimetic simplification. The realization of bionic fish inspired by the cownose ray. IEEE Robot. Autom. Mag. 26, 27–38 (2018)

    Article  Google Scholar 

  5. Cai, Y., Bi, S., Zhang, L.: Design and implication of a bionic pectoral fin imitating cow-nosed ray. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3525–3529 (2010)

    Google Scholar 

  6. Cai, Y., Bi, S., Zheng, L.: Design and experiments of a robotic fish imitating cow-nosed ray. J. Bionic Eng. 7, 120–126 (2010)

    Article  Google Scholar 

  7. Cai, Y., Bi, S., Zheng, L.: Design optimization of a bionic fish with multi-joint fin rays. Adv. Robot. 26, 177–196 (2012)

    Article  Google Scholar 

  8. Carlton, J.: Propeller Blade Vibration in Marine Propeller and Propulsion. Butterworth-Heinemann (2012)

    Google Scholar 

  9. Chen, L., Bi, S., Cai, Y., Cao, Y., Pan, G.: Design and experimental research on a bionic robot fish with tri-dimensional soft pectoral fins inspired by cownose ray. J. Marine Sci. Eng. 10, 537 (2022)

    Article  Google Scholar 

  10. Chen, Z., Um, T., Zhu, J., Bart-Smith, H.: Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin. In: ASME 2011 International Mechanical Engineering Congress & Exposition, pp. 1–8 (2011)

    Google Scholar 

  11. Chew, C., Lim, Q., Yeo, K.S.: Development of propulsion mechanism for robot manta ray. In: 2015 IEEE Conference on Robotics and Biomimetics, pp. 1918–1923 (2015)

    Google Scholar 

  12. Chi, W., Low, K.: Review and fin structure design for robotic manta ray (roman IV). J. Robot. Mechatron. 24(4), 621–628 (2012)

    Article  Google Scholar 

  13. Evologics: Boss Project. Manta ray AUV. Techincal report (2017). https://evologics.de/projects/boss

  14. Fish, F., Schreiber, C., Moored, K., Liu, G., Dong, H., Bart-Smith, H.: Hydrodynamic performance of aquatic flap**: efficiency of underwater flight in the manta (2016)

    Google Scholar 

  15. Gao, J., Bi, S., Xu, Y., Liu, C.: Development and design of a robotic manta ray featuring flexible pectoral fins. In: 2007 IEEE International Conference on Robotics and Biomimetics, pp. 519–523 (2007)

    Google Scholar 

  16. Hall, K., Hundt, P.J., Swenson, J., Summers, A., Crow, K.: The evolution of underwater flight: the redistribution of pectoral fin rays in manta rays and their relatives (myliobatidae). J. Morphol. 279, 1155–1170 (2018)

    Article  Google Scholar 

  17. Hao, Y., Cao, Y., Cao, Y., Huang, Q., Pan, G.: Course control of a manta robot based on amplitude and phase differences. J. Marine Sci. Eng. 10(2), 285 (2022)

    Article  Google Scholar 

  18. He, J., Cao, Y., Huang, Q., Cao, Y., Tu, C., Pan, G.: A new type of bionic manta ray robot. In: Global Oceans 2020: Singapore, U.S. Gulf Coast (2020)

    Google Scholar 

  19. He, J., Cao, Y., Huang, Q., Pan, G., Dong, X., Cao, Y.: Effects of bionic pectoral fin rays’ spanwise flexibility on forwarding propulsion performance. J. Marine Sci. Eng. 10, 783 (2022)

    Article  Google Scholar 

  20. Katzschmann, R., Preto, J.D., Curdy, R.M., Rus, D.: Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 3(16), eaar3449 (2018)

    Google Scholar 

  21. Li, T., et al.: Fast-moving soft electronic fish. Sci. Adv. 3, e1602045 (2017)

    Google Scholar 

  22. Liu, G., Ren, Y., Zhu, J., Bart-Smith, H., Dong, H.: Thrust producing mechanisms in ray-inspired underwater vehicle propulsion. Theor. Appl. Mech. Lett. 5, 54–57 (2015)

    Article  Google Scholar 

  23. Low, K., Zhou, C., Seet, G.: Improvement and testing of a robotic manta ray (roman-III). In: The 2011 IEEE International Conference on Robotics and Biomimetics, pp. 1730–1735 (2011)

    Google Scholar 

  24. Ma, H., Cai, Y., Wang, Y., Bi, S., Gong, Z.: A biomimetic cownose ray robot fish with oscillating and chordwise twisting flexible pectoral fins. Industr. Rob.: Int. J. 42(3), 214–221 (2015)

    Article  Google Scholar 

  25. Meng, Y., Wu, Z., Donng, H., Wang, J., Yu, J.: Toward a novel robotic manta with unique pectoral fins. IEEE Trans. Syst. Man Cybern.: Syst. 1, 1–11 (2020)

    Google Scholar 

  26. Noor, S.N.A.M., Mahmud, J.: Modelling and computation of silicone rubber deformation constitutive equation. In: 2015 5th International Conference on Communication Systems and Network Technologies, pp. 1323–1326 (2015)

    Google Scholar 

  27. Riggs, P., Bowyer, A., Vincent, J.: Advantages of a biomimetic stiffness profile in pitching flexible fin propulsion. J. Bionic Eng. 7(2), 113–119 (2010)

    Article  Google Scholar 

  28. Roetemberg, D., Luinge, H., Baten, C., Veltink, P.: Compensation of magnetic disturbance improves inertial and magnetic sensing of human body segment orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 395–405 (2005)

    Article  Google Scholar 

  29. Rosemberger, L.: Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J. Exp. Biol. 204, 379–394 (2001)

    Article  Google Scholar 

  30. Russo, R., Blemker, S., Fish, F., Bart-Smith, H.: Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design. Bioinspir. Biomimet. 10, 046002 (2015)

    Google Scholar 

  31. Salazar, R., Fuentes, V., Abdelkefi, A.: Classification of biological and bioinspired aquatic systems: a review. Ocean Eng. 148, 75–114 (2018)

    Article  Google Scholar 

  32. Sfakiotakis, M., Lane, D., Davies, J.: Review of fish swimming modes for aquatic locomotion. IEEE J. Oceanic Eng. 24(2), 237–252 (1999)

    Article  Google Scholar 

  33. Sun, Y., Wu, L., Wang, H., Althoefer, K., Qi, P.: The validation of viscosity induced chord-wise undulation on soft fin array towards a novel robotic manta ray. In: 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), pp. 673–680 (2022)

    Google Scholar 

  34. **ng, C., Cao, Y., Cao, Y., Pan, G., Huang, Q.: Asymmetrical oscillating morphology hydrodynamic performance of a novel bionic pectoral fin. J. Marine Sci. Eng. 10, 289 (2022)

    Article  Google Scholar 

  35. Zhang, D., Pan, G., Cao, Y., Huang, Q., Cao, Y.: A novel integrated gliding and flap** propulsion biomimetic manta-ray robot. J. Marine Sci. Eng. 10, 924 (2022)

    Article  Google Scholar 

  36. Zhang, Y., Wang, S., Wang, X., Geng, Y.: Design and control of bionic manta ray robot with flexible pectoral fin. In: IEEE 14th International Conference on Control and Automation (ICCA), pp. 1034–1039 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bianchi, G., Maffi, L., Tealdi, M., Cinquemani, S. (2023). Design and Performance of a Cownose Ray-Inspired Robot for Underwater Exploration. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38857-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38856-9

  • Online ISBN: 978-3-031-38857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation