Multistage PD-(1+PI) Controller Design for Frequency Control of a Microgrid Considering Demand Response Program

  • Chapter
  • First Online:
Smart Grid 3.0

Part of the book series: Power Systems ((POWSYS))

  • 273 Accesses

Abstract

This chapter examines the load-frequency control (LFC) problem for an islanded fully-renewable microgrid (MG) that meets all users’ power demands with renewable energy sources (RESs). Islanded MGs with substantial RESs penetration face uncertainty. If we want to reap the advantages of RESs, we must equip the MG with a strong and effective control system since these sources, notably wind turbines and photovoltaic systems, are weather-dependent. For LFC, a multistage controller is designed. It removes PID controller flaws and operates quickly and reliably. The proposed controller is a Proportional Derivative (PD) cascaded with One + Proportional Integral (1+PI). The PD controllers operate as filter to speed up controller response, while PI controllers overcome steady-state error. This control approach combines these two controllers in the first and second stages to decrease steady-state error and achieve system stability faster to increase system responsiveness. Demand response programs (DRPs) make up for the MG’s lack of auxiliary services. This chapter discusses how a frequency-based control method for responsive loads in smart MGs may involve in the LFC issue. The DRP presence or absence and response loads involvement amount have been examined. The MG faces uncertainty and nonlinear variables, making LFC controller design challenging. Metaheuristic algorithms are used to find optimum controllers for the LFC issue. The particle swarm optimization with nonlinear time-varying acceleration coefficients (PSO-NTVAC) is used to find the best controller settings. To adjust for frequency variations in a 100% renewable MG, the cascade PD-(1+PI) controller is evaluated under a number of situations, including system modelling uncertainty and nonlinearity, and the existence of the DRP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Diesel fuel with 50 ppm sulfur content.

  2. 2.

    Bottom Dead Centre.

Abbreviations

BDEG:

Biodiesel engine generator

BGTG:

Biogas turbine generator

CSP:

Concentrated solar power plant

DRP:

Demand response program

IAE:

Integral of absolute error

ISE:

Integral of square error

ITAE:

Integral of time-weighted absolute error

ITSE:

Integral of time-weighted square error

LFC:

Load-frequency control

MG:

Microgrid

MHP:

Micro-hydro power

MUS:

Maximum undershoot

PSO:

Particle swarm optimization

RES:

Renewable energy sources

ST:

Settling time

STP:

Solar thermal power

WTG:

Wind turbine generator

References

  1. Heidary J, Gheisarnejad M, Rastegar H, Khooban MH (2022) Survey on microgrids frequency regulation: modeling and control systems. Electr Power Syst Res 213:108719

    Article  Google Scholar 

  2. Bagherzadeh L, Shahinzadeh H et al (2019) A short-term energy management of microgrids considering renewable energy resources, micro-compressed air energy storage and DRPs. Int J Renew Energy Res 9:1712–1723

    Google Scholar 

  3. Hatziargyriou N, Asano H et al (2007) Microgrids. IEEE Power Energy Mag. https://doi.org/10.1109/MPAE.2007.376583

  4. Li G, Wu D, Hu J et al (2017) HELOS: heterogeneous load scheduling for electric vehicle-integrated microgrids. IEEE Trans Veh Technol. https://doi.org/10.1109/TVT.2016.2636874

    Article  Google Scholar 

  5. Sahoo SC, Barik AK, Das DC (2022) Synchronized voltage-frequency regulation in sustainable microgrid using novel Green Leaf-hopper Flame optimization. Sustain Energy Technol Assess 52:102349

    Google Scholar 

  6. Shayeghi H, Rahnama A (2020) Designing a PD-(1+PI) controller for LFC of an entirely renewable microgrid using PSO-TVAC. Int J Techni Phys Prob Eng (IJTPE) 12:19–27

    Google Scholar 

  7. Khokhar B, Dahiya S, Parmar KS (2021) A novel hybrid fuzzy PD-TID controller for load frequency control of a standalone microgrid. Arabian J Sci Eng 46:1053–1065

    Article  Google Scholar 

  8. Shayeghi H, Younesi A (2019) Mini/micro-grid adaptive voltage and frequency stability enhancement. J Oper Autom Power Eng 7:107–118

    Google Scholar 

  9. Bevrani H, Shokoohi S (2013) An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids. IEEE Trans Smart Grid 4:1505–1513

    Article  Google Scholar 

  10. Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control. McGraw-Hill, New York

    Google Scholar 

  11. Peddakapu K, Srinivasarao P, Mohamed MR, Arya Y, Kishore DK (2022) Stabilization of frequency in multi-microgrid system using barnacle mating optimizer-based cascade controllers. Sust Energy Technol Asses 54:102823

    Google Scholar 

  12. Padhy S, Panda S, Mahapatra S (2017) A modified GWO technique based cascade PI-PD controller for AGC of power systems in presence of plug in electric vehicles. Eng Sci Technol Int J. https://doi.org/10.1016/j.jestch.2017.03.004

    Article  Google Scholar 

  13. Shayeghi H, Rahnama, A (2022) Frequency regulation of a standalone interconnected AC microgrid using innovative multistage TDF (1+FOPI) controller. J Oper Autom Power Eng

    Google Scholar 

  14. Bao YQ, Li Y et al (2017) Demand response for frequency control of multi-area power system. J Mod Power Syst Clean Energy. https://doi.org/10.1007/s40565-016-0260-1

    Article  Google Scholar 

  15. Rahnama A, Shayeghi H, Dejamkhooy A, Bizon N (2022) A cost-technical profit-sharing approach for optimal energy management of a multi-microgrid distribution system. Energy. https://doi.org/10.1016/j.energy.2022.125057

    Article  Google Scholar 

  16. Gouveia C, Moreira J et al (2013) Coordinating storage and demand response for microgrid emergency operation. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2013.2257895

    Article  Google Scholar 

  17. Ab Wahab MN, Nefti-Meziani S, Atyabi A (2015) A comprehensive review of swarm optimization algorithms. PLoS ONE. https://doi.org/10.1371/journal.pone.0122827

    Article  Google Scholar 

  18. Shayeghi H, Rahnama A, Mohajery R, Bizon N, Mazare AG, Ionescu LM (2022) Multi-area microgrid load-frequency control using combined fractional and integer order master-slave controller considering electric vehicle aggregator effects. Electronics. https://doi.org/10.3390/electronics11213440

  19. Cocco D, Serra F (2015) Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants. Energy. https://doi.org/10.1016/j.energy.2014.12.067

    Article  Google Scholar 

  20. Cau G, Cocco D (2014) Comparison of medium-size concentrating solar power plants based on parabolic trough and linear Fresnel collectors. Energy Procedia. https://doi.org/10.1016/j.egypro.2014.01.012

    Article  Google Scholar 

  21. Quoilin S, Broek MVD et al (2013) Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2013.01.028

    Article  Google Scholar 

  22. Hernandez JC, Peñas CJ et al (2020) A multi-period optimization model for the design of an off-grid micro hydro power plant with profitability and degradation considerations. Process Integr Optim Sustain. https://doi.org/10.1007/s41660-020-00136-5

    Article  Google Scholar 

  23. Okot DK (2013) Review of small hydropower technology. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2013.05.006

    Article  Google Scholar 

  24. Bos K, Chaplin D, Mamun A (2018) Benefits and challenges of expanding grid electricity in Africa: a review of rigorous evidence on household impacts in develo** countries. Energy Sustain Dev. https://doi.org/10.1016/j.esd.2018.02.007

    Article  Google Scholar 

  25. Barik AK, Das DC (2018) Active power management of isolated renewable microgrid generating power from rooftop solar arrays, sewage waters and solid urban wastes of a smart city using Salp swarm algorithm. In: 2018 technologies for smart-city energy security and power (ICSESP). https://doi.org/10.1109/ICSESP.2018.8376744

  26. Ghasemi A, Tabatabaei M et al (2018) Biogas: fundamentals, process, and operation. Springer, Cham, pp 1–33

    Book  Google Scholar 

  27. Rajaeifar MA, Tabatabaei M et al (2019) Biodiesel production and consumption: life cycle assessment (LCA) approach. Springer, Switzerland

    Google Scholar 

  28. Demirbas A (2008) Biodiesel: a realistic fuel alternative for diesel engines. Springer, London, pp 111–119

    Google Scholar 

  29. Bayındır H, Işıka MZ et al (2017) Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends. Energy. https://doi.org/10.1016/j.energy.2017.01.153

    Article  Google Scholar 

  30. Ramadhas AS, Jayaraj S, Muraleedharan C (2006) Theoretical modeling and experimental studies on biodiesel-fueled engine. Renew Energy. https://doi.org/10.1016/j.renene.2005.09.011

    Article  Google Scholar 

  31. El-Fergany A, El-Hameed MA (2017) Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimiser. IET Gener Transm Distrib. https://doi.org/10.1049/iet-gtd.2016.0455

    Article  Google Scholar 

  32. Gönen T (2014) Distributed generation and renewable energy. Electric power distribution engineering, 3rd edn. CRC Press, Tylor & Francis Group, pp 767–834

    Google Scholar 

  33. Lee D, Wang L (2008) Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system. Part I: Time-domain simulations. IEEE Trans Energy Convers. https://doi.org/10.1109/TEC.2007.914309

    Article  Google Scholar 

  34. Hote YV, Jain S (2018) PID controller design for load frequency control: past, present and future challenges. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2018.06.162

    Article  Google Scholar 

  35. Khalilpour M, Valipour K et al (2013) Designing a robust and adaptive PID controller for gas turbine connected to the generator. Res J Appl Sci Eng Technol 5:1544–1551

    Article  Google Scholar 

  36. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—Int Conf Neural Net. https://doi.org/10.1109/ICNN.1995.488968

  37. Valle Yd, Venayagamoorthy GK et al (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2007.896686

    Article  Google Scholar 

  38. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence. https://doi.org/10.1109/ICEC.1998.699146

  39. Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Proceedings of the 7th international conference on evolutionary programming. Springer, Berlin, Heidelberg

    Google Scholar 

  40. Eslami M, Shareef H, Mohamed A, Khajehzadeh M (2012) An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems. Int J Elec Power Energy. https://doi.org/10.1016/j.ijepes.2012.07.028

    Article  Google Scholar 

  41. Eslami M, Shareef H, Taha MR, Khajehzadeh M (2014) Adaptive particle swarm optimization for simultaneous design of UPFC dam** controllers. Int J Electr Power Energy Syst. https://doi.org/10.1016/j.ijepes.2013.11.034

    Article  Google Scholar 

  42. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw. https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Shayeghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shayeghi, H., Rahnama, A. (2023). Multistage PD-(1+PI) Controller Design for Frequency Control of a Microgrid Considering Demand Response Program. In: Appasani, B., Bizon, N. (eds) Smart Grid 3.0. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-38506-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38506-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38505-6

  • Online ISBN: 978-3-031-38506-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation