Part of the book series: Wireless Networks ((WN))

  • 101 Accesses

Abstract

The PLS technology is highly promising for implementing secure communication in wireless systems due to its advantages of easy deployment, low complexity, and everlasting secrecy. In this chapter, we provide secure communication schemes based on typical PLS techniques like beamforming, precoding, link selection, as well as cooperative jamming. In Sect. 2.1, we show how to design a secure beamforming scheme to maximize the secrecy rate of two-way relay systems. In Sect. 2.2, we also focus on the two-way relay systems and present a secure precoding scheme to maximize the secrecy energy efficiency (SEE). In Sect. 2.3, we investigate effective link selection policies for two-hop cooperative wireless networks. The security-delay tradeoff issue in a two-hop wireless system based on the relay selection technique is studied in Sect. 2.4, followed by a sight-based cooperative jamming (SCJ) scheme for millimeter-wave (mmWave) systems in Sect. 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In time slot 0, \(S_1\) and \(S_2\) only transmit signals, and R only receives signals.

  2. 2.

    To realize SEE maximization, except for time synchronization, cooperation on the precoders’ joint design is also required. Specifically, the two sources need to exchange channel state information, and one of them (e.g., \(S_1\)) needs to locally compute the optimal precoders. After finishing the precoding design, \(S_1\) sends the optimal precoders to \(S_2\) and R. Then, all nodes will use the optimal precoders to transmit their signals.

  3. 3.

    We omit the index of \(\varphi \), i.e., x, because x is a fixed value in this iteration. In the following, we will also omit the corresponding iteration index if there is no ambiguity.

  4. 4.

    A common PC with CPU Intel Core i7-4790 3.60 GHz and RAM 8 GB is used to execute the calculation.

  5. 5.

    Since the channel gain of a link is independent and identically distributed in each time slot, the SOP of a link is the same in each time slot, and the time indicator k can be omitted.

References

  1. Mekkawy T, Yao R, Tsiftsis TA, Xu F, Lu Y (2018) Joint beamforming alignment with suboptimal power allocation for a two-way untrusted relay network. IEEE Trans Inf Forensics Secur 13(10):2464–2474

    Article  Google Scholar 

  2. Shim Y, Choi W, Park H (2016) Beamforming design for full-duplex two-way amplify-and-forward MIMO relay. IEEE Trans Wireless Commun 15(10):6705–6715

    Article  Google Scholar 

  3. Zheng G (2015) Joint beamforming optimization and power control for full-duplex MIMO two-way relay channel. IEEE Trans Signal Process 63(3):555–566

    Article  MathSciNet  MATH  Google Scholar 

  4. Shi Q, Hong M, Gao X, Song E, Cai Y, Xu W (2016) Joint source-relay design for full-duplex MIMO AF relay systems. IEEE Trans Signal Process 64(23):6118–6131

    Article  MathSciNet  MATH  Google Scholar 

  5. Meyr H, Moeneclaey M, Fechtel S (1997) Digital communication receivers: synchronization, channel estimation, and signal processing. Wiley, New York

    Google Scholar 

  6. Riihonen T, Werner S, Wichman R (2011) Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Trans Signal Process 59(12):5983–5993

    Article  MathSciNet  MATH  Google Scholar 

  7. Day BP, Margetts AR, Bliss DW, Schniter P (2012) Full-duplex bidirectional MIMO: Achievable rates under limited dynamic range. IEEE Trans Signal Process 60(7):3702–3713

    Article  MathSciNet  MATH  Google Scholar 

  8. Tekin E, Yener A (2008) The general Gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming. IEEE Trans Inf Theory 54(6):2735–2751

    Article  MathSciNet  MATH  Google Scholar 

  9. Niesen U, Shah D, Wornell GW (2009) Adaptive alternating minimization algorithms. IEEE Trans Inf Theory 55(3):1423–1429

    Article  MathSciNet  MATH  Google Scholar 

  10. De Maio A, Huang Y, Palomar DP, Zhang S, Farina A (2011) Fractional QCQP with applications in ML steering direction estimation for radar detection. IEEE Trans Signal Process 59(1):172–185

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo Z-Q, Chang T-H, Palomar D, Eldar Y (2010) SDP relaxation of homogeneous quadratic optimization: approximation. Convex optimization in signal processing and communications. Cambridge University Press, Cambridge

    Google Scholar 

  12. Charnes A, Cooper WW (1962) Programming with linear fractional functionals. Nav Res Logist Q 9(3-4):181–186

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen K, Yu W (2018) Fractional programming for communication systems—Part I: Power control and beamforming. IEEE Trans Signal Process 66(10):2616–2630

    Article  MathSciNet  MATH  Google Scholar 

  14. Grant M, Boyd S, Ye Y (2008) CVX: MATLAB software for disciplined convex programming. http://cvxr.com/cvx

  15. Ai W, Huang Y, Zhang S (2011) New results on Hermitian matrix rank-one decomposition. Math Program 128(1-2):253–283

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang R, Liang Y-C, Chai CC, Cui S (2009) Optimal beamforming for two-way multi-antenna relay channel with analogue network coding. IEEE J Sel Areas Commun 27(5):699–712

    Article  Google Scholar 

  17. Xu S, Hua Y (2011) Optimal design of spatial source-and-relay matrices for a non-regenerative two-way MIMO relay system. IEEE Trans Wireless Commun 10(5):1645–1655

    Article  MathSciNet  Google Scholar 

  18. Bertsekas DP (1999) Nonlinear programming. Athena Scientific, Belmont

    Google Scholar 

  19. Couillet R, Debbah M (2011) Random matrix methods for wireless communications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  20. Zhang X-D (2017) Matrix analysis and applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  21. Khisti A, Wornell GW (2010) Secure transmission with multiple antennas i: The misome wiretap channel. IEEE Trans Inf Theory 56(7):3088–3104

    Article  MathSciNet  MATH  Google Scholar 

  22. Khisti A, Wornell GW (2010) Secure transmission with multiple antennas ii: The mimome wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532

    Article  MathSciNet  MATH  Google Scholar 

  23. Jeong C, Kim I, Kim DI (2012) Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system. IEEE Trans Signal Process 60(1):310–325

    Article  MathSciNet  MATH  Google Scholar 

  24. **ong J, Cheng L, Ma D, Wei J (2016) Destination-aided cooperative jamming for dual-hop amplify-and-forward MIMO untrusted relay systems. IEEE Trans Veh Technol 65(9):7274–7284

    Article  Google Scholar 

  25. Sun L, Xu H, Zhang Y (2021) Constellation-overlap**-based secure transmission for two-way untrusted relaying: Method, implementation, and experimental results. IEEE Wireless Commun Lett 10(1):121–125

    Article  Google Scholar 

  26. Wyner AD (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387

    Article  MathSciNet  MATH  Google Scholar 

  27. Cui S, Goldsmith AJ, Bahai A (2004) Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE J Sel Areas Commun 22(6):1089–1098

    Article  Google Scholar 

  28. Dinkelbach W (1967) On nonlinear fractional programming. Manag Sci 13(7):492–498

    Article  MathSciNet  MATH  Google Scholar 

  29. Sylvester JJ (1851) On the relation between the minor determinants of linearly equivalent quadratic functions. Philos Mag 1(4):295–305

    Article  Google Scholar 

  30. Harville DA (2008) Matrix algebra from a statistician’s perspective. Springer Science & Business Media, New York

    MATH  Google Scholar 

  31. Dinh TP, Thi HAL (2014) Recent advances in DC programming and DCA. In: Transactions on computational intelligence XIII. Springer, New York, pp 1–37

    Google Scholar 

  32. Phan AH, Tuan HD, Kha HH, Nguyen HH (2012) Beamforming optimization in multi-user amplify-and-forward wireless relay networks. IEEE Trans Wireless Commun 11(4):1510–1520

    Article  Google Scholar 

  33. Golub GH, Loan CFV (2012) Matrix computations, vol. 3. JHU Press, Baltimore

    MATH  Google Scholar 

  34. Fletcher R (2013) Practical methods of optimization. Wiley, New York

    MATH  Google Scholar 

  35. Tulino AM, Verdú S, Verdu S (2004) Random matrix theory and wireless communications. Now Publishers Inc., Hanover

    Book  MATH  Google Scholar 

  36. Zhou X, Li Q (2018) Energy efficiency for SWIPT in MIMO two-way amplify-and-forward relay networks. IEEE Trans Veh Technol 67(6):4910–4924

    Article  Google Scholar 

  37. Mo J, Tao M, Liu Y, Wang R (2014) Secure beamforming for MIMO two-way communications with an untrusted relay. IEEE Trans Signal Process 62(9):2185–2199

    Article  MathSciNet  MATH  Google Scholar 

  38. Mo J, Tao M, Liu Y (2012) Relay placement for physical layer security: A secure connection perspective. IEEE Commun Lett 16(6):878–881

    Article  Google Scholar 

  39. Tanbourgi R, Dhillon HS, Andrews JG, Jondral FK (2014) Effect of spatial interference correlation on the performance of maximum ratio combining. IEEE Trans Wireless Commun 13(6):3307–3316

    Article  Google Scholar 

  40. Güngör O, Tan J, Koksal CE, Gamal HE, Shroff NB (2013) Secrecy outage capacity of fading channels. IEEE Trans Inf Theory 59(9):5379–5397

    Article  MathSciNet  MATH  Google Scholar 

  41. Neiman M (1943) The principle of reciprocity in antenna theory. Proc IRE 31(12):666–671

    Article  Google Scholar 

  42. Huang J, Swindlehurst A (2015) Buffer-aided relaying for two-hop secure communication. IEEE Trans Wireless Commun 14(1):152–164

    Article  Google Scholar 

  43. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(4):623–656

    Article  MathSciNet  MATH  Google Scholar 

  44. Daduna H (2001) Queueing networks with discrete time scale: explicit expressions for the steady state behavior of discrete time stochastic networks. Springer, New York

    Book  MATH  Google Scholar 

  45. Zhang C, Song Y, Fang Y, Zhang Y (2011) On the price of security in large-scale wireless ad hoc networks. IEEE/ACM Trans Netw 19(2):319–332

    Article  Google Scholar 

  46. Zhou X, Ganti RK, Andrews JG, Hjorungnes A (2011) On the throughput cost of physical layer security in decentralized wireless networks. IEEE Trans Wireless Commun 10(8):2764–2775

    Article  Google Scholar 

  47. Xu Y, Liu J, Shen Y, Jiang X, Shiratori N (2017) Physical layer security-aware routing and performance tradeoffs in ad hoc networks. Comput Netw 123:77–87

    Article  Google Scholar 

  48. Xu Y, Liu J, Shen Y, Jiang X, Taleb T (2016) Security/qos-aware route selection in multi-hop wireless ad hoc networks. In: IEEE International Conference on Communications, (ICC), pp 1–6

    Google Scholar 

  49. Topkis DM, Veinott AF Jr (1967) On the convergence of some feasible direction algorithms for nonlinear programming. SIAM J Control 5(2):268–279

    Article  MathSciNet  MATH  Google Scholar 

  50. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  51. C++ and MATLAB simulator for link selection for secure cooperative networks with buffer-aided relaying. [Online]. Available: https://github.com/Future-heji/research/tree/Future-heji-patch-1

  52. Tian Z, Chen G, Gong Y, Chen Z, Chambers JA (2014) Buffer-aided max-link relay selection in amplify-and-forward cooperative networks. IEEE Trans Veh Technol 64(2):553–565

    Article  Google Scholar 

  53. Chen G, Tian Z, Gong Y, Chen Z, Chambers JA (2014) Max-ratio relay selection in secure buffer-aided cooperative wireless networks. IEEE Trans Inf Forensics Secur 9(4):719–729

    Article  Google Scholar 

  54. Liao X, Wu Z, Zhang Y, Jiang X (2016) The delay-security trade-off in two-hop buffer-aided relay wireless network. In: 2016 International Conference on Networking and Network Applications (NaNA). IEEE, pp 173–177

    Google Scholar 

  55. Zhang X, Zhou X, McKay MR (2013) On the design of artificial-noise-aided secure multi-antenna transmission in slow fading channels. IEEE Trans Veh Technol 62(5):2170–2181

    Article  Google Scholar 

  56. El Shafie A, Niyato D, Al-Dhahir N (2016) Enhancing the phy-layer security of mimo buffer-aided relay networks. IEEE Wireless Commun Lett 5(4):400–403

    Article  Google Scholar 

  57. Wang C, Wang H-M (2014) On the secrecy throughput maximization for miso cognitive radio network in slow fading channels. IEEE Trans Inf Forensics Secur 9(11):1814–1827

    Article  Google Scholar 

  58. Koyluoglu O, Koksal C, El Mamal H (2012) On secrecy capacity scaling in wireless networks. IEEE Trans Inf Theory 58(5):3000–3015

    Article  MathSciNet  MATH  Google Scholar 

  59. El Shafie A, Sultan A, Al-Dhahir N (2016) Physical-layer security of a buffer-aided full-duplex relaying system. IEEE Commun Lett 20(9):1856–1859

    Article  Google Scholar 

  60. Zhang Y, Liang T, Sun A (2015) A new max-ratio relay selection scheme in secure buffer-aided cooperative wireless networks. In: 2015 8th International Symposium on Computational Intelligence and Design (ISCID), vol 1. IEEE, pp 314–317

    Google Scholar 

  61. Cai C, Cai Y, Zhou X, Yang W, Yang W (2014) When does relay transmission give a more secure connection in wireless ad hoc networks? IEEE Trans Inf Forensics Secur 9(4):624–632

    Article  Google Scholar 

  62. Krikidis I, Charalambous T, Thompson JS (2012) Buffer-aided relay selection for cooperative diversity systems without delay constraints. IEEE Trans Wireless Commun 11(5):1957–1967

    Article  Google Scholar 

  63. Norris JR (1998) Markov chains, vol 2. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  64. Peterson LL, Davie BS (2007) Computer networks: a systems approach. Elsevier, New York

    MATH  Google Scholar 

  65. c++ simulator for e2e delay and stp performance in two-hop wireless networks (2017). [online]. Available: http://xnliao.blogspot.com/

  66. Haenggi M (2012) Stochastic geometry for wireless networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  67. Bai T, Heath RW (2015) Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans Wireless Commun 14(2):1100–1114

    Article  Google Scholar 

  68. Thornburg A, Bai T, Heath RW (2016) Performance analysis of outdoor mmwave ad hoc networks. IEEE Trans Signal Process 64(15):4065–4079

    Article  MathSciNet  MATH  Google Scholar 

  69. Wang C, Wang H (2016) Physical layer security in millimeter wave cellular networks. IEEE Trans Wireless Commun 15(8):5569–5585

    Article  Google Scholar 

  70. Deng N, Haenggi M (2017) A fine-grained analysis of millimeter-wave device-to-device networks. IEEE Trans Wireless Commun 65(11):4940–4954

    Article  Google Scholar 

  71. Chiu S, Stoyan D, Kendall W, Mecke J (2013) Stochastic geometry and its applications, 3rd edn. Wiley, New York

    Book  MATH  Google Scholar 

  72. Monte Carlo simulator used in cooperative jamming for secure mmwave ad hoc communications (2019). [Online]. Available: https://github.com/yy90zhang/SimulatorForMmWaveCJPaper

  73. Singh S, Kulkarni MN, Ghosh A, Andrews JG (2015) Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE J Sel Areas Commun 33(10):2196–2211

    Article  Google Scholar 

  74. Moltchanov D (2012) Distance distributions in random networks. Ad Hoc Netw 10(6):1146–1166

    Article  Google Scholar 

  75. Zhu Y, Zheng G, Fitch M (2018) Secrecy rate analysis of UAV-enabled mmwave networks using Matern hardcore point processes. IEEE J Sel Areas Commun 36(7):1397–1409

    Article  Google Scholar 

  76. Yazdanshenasan Z, Dhillon HS, Afshang M, Chong PHJ (2016) Poisson hole process: Theory and applications to wireless networks. IEEE Trans Wireless Commun 15(11):7531–7546

    Article  Google Scholar 

  77. Zheng T, Wang H, Yuan J, Han Z, Lee MH (2017) Physical layer security in wireless ad hoc networks under a hybrid full-/half-duplex receiver deployment strategy. IEEE Trans Wireless Commun 16(6):3827–3839

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, Y., Zhang, Y., Jiang, X. (2023). Physical Layer Secure Communications. In: Secrecy, Covertness and Authentication in Wireless Communications. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-38465-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38465-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38464-6

  • Online ISBN: 978-3-031-38465-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation