Improving the Predictive Ability of Radiomics-Based Regression Survival Models Through Incorporating Multiple Regions of Interest

  • Conference paper
  • First Online:
The Latest Developments and Challenges in Biomedical Engineering (PCBEE 2023)

Abstract

Radiomic features, numeric values extracted from a region of interest (ROI) in medical images, can be used to train prognostic models for various types of cancer. However, in locally advanced diseases, more than one lesion may be present. Using the information contained in multiple regions increases the complexity and necessitates additional processing. Here, we tested seven strategies of handling multiple regions in radiomic-based regularized Cox regression for predicting metastasis-free survival using a cohort of 115 non-small cell lung cancer patients. We have found that using all ROIs to fit the model allowed for better results than using only the largest ROI, achieving c-indexes of 0.617 and 0.581, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Article  Google Scholar 

  2. Fujarewicz, K., Wilk, A., Borys, D., d’Amico, A., Suwiński, R., Świerniak, A.: Machine learning approach to predict metastasis in lung cancer based on radiomic features. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, T.P., Trawiński, B., Szczerbicki, E. (eds.) Intelligent Information and Database Systems, pp. 40–50. Cham, Springer Nature Switzerland (2022)

    Google Scholar 

  3. Lu, T., Yang, X., Huang, Y., Zhao, M., Li, M., Ma, K., Yin, J., Zhan, C., Wang, Q.: Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag. Res. 11, 943–953 (2019). January

    Google Scholar 

  4. Reginelli, A., Nardone, V., Giacobbe, G., Belfiore, M.P., Grassi, R., Schettino, F., Del Canto, M., Grassi, R., Cappabianca, S.: Radiomics as a new frontier of imaging for cancer prognosis: a narrative review. Diagnostics 11(10) (2021)

    Google Scholar 

  5. Saif, W., Tzannou, I., Makrilia, N., Syrigos, K.: Role and cost effectiveness of pet/ct in management of patients with cancer. Yale J. Biol. Med. 83, 53–65 (2010)

    Google Scholar 

  6. Shen, C., Liu, Z., Guan, M., Song, J., Lian, Y., Wang, S., Tang, Z., Dong, D., Kong, L., Wang, M., Shi, D., Tian, J.: 2d and 3d ct radiomics features prognostic performance comparison in non-small cell lung cancer. Transl. Oncol. 10(6), 886–894 (2017)

    Google Scholar 

  7. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39(5), 1–13 (2011)

    Article  Google Scholar 

  8. van Griethuysen, J.J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R.G., Fillion-Robin, J.C., Pieper, S., Aerts, H.J.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). October

    Google Scholar 

  9. Wilk, A., Borys, D., Fujarewicz, K., d’Amico, A., Suwiński, R., Świerniak, A.: Potential of radiomics features for predicting time to metastasis in nsclc. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, T.P., Trawiński, B., Szczerbicki, E. (eds.) Intelligent Information and Database Systems, pp. 64–76. Cham, Springer Nature Switzerland (2022)

    Google Scholar 

  10. Zhang, Y., Oikonomou, A., Wong, A., Haider, M.A., Khalvati, F.: Radiomics-based prognosis analysis for non-small cell lung cancer. Sci. Rep. 7(1) (2017)

    Google Scholar 

  11. Zwanenburg, A., Valliè res, M., Abdalah, M.A., Aerts, H.J.W.L., Andrearczyk, V., Apte, A., Ashrafinia, S., Bakas, S., Beukinga, R.J., Boellaard, R., Bogowicz, M., Boldrini, L., Buvat, I., Cook, G.J.R., Davatzikos, C., Depeursinge, A., Desseroit, M.C., Dinapoli, N., Dinh, C.V., Echegaray, S., Naqa, I.E., Fedorov, A.Y., Gatta, R., Gillies, R.J., Goh, V., Götz, M., Guckenberger, M., Ha, S.M., Hatt, M., Isensee, F., Lambin, P., Leger, S., Leijenaar, R.T., Lenkowicz, J., Lippert, F., Losnegård, A., Maier-Hein, K.H., Morin, O., Müller, H., Napel, S., Nioche, C., Orlhac, F., Pati, S., Pfaehler, E.A., Rahmim, A., Rao, A.U., Scherer, J., Siddique, M.M., Sijtsema, N.M., Fernandez, J.S., Spezi, E., Steenbakkers, R.J., Tanadini-Lang, S., Thorwarth, D., Troost, E.G., Upadhaya, T., Valentini, V., van Dijk, L.V., van Griethuysen, J., van Velden, F.H., Whybra, P., Richter, C., Löck, S.: The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenoty**. Radiology 295(2), 328–338 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish National Science Centre, grant number: UMO-2020/37/B/ST6/01959, and Silesian University of Technology statutory research funds. Calculations were performed on the Ziemowit computer cluster in the Laboratory of Bioinformatics and Computational Biology created in the EU Innovative Economy Programme POIG.02.01.00-00-166/08 and expanded in the POIG.02.03.01-00-040/13 project.

Author information

Authors and Affiliations

Authors

Contributions

A. M. W. designed the computational study and methodology, performed the analysis and visualizations, and wrote the initial draft of the manuscript. D. B. extracted the radiomic features and edited the manuscript. E. K. participated in the study design, conceptualization and methodology, prepared the data for analysis and edited the manuscript. A. D’A. and I. G. assembled and prepared the imaging data. I. D. S. and R. S. provided and assembled the patient database. S.G. participated in the analysis and manuscript writing. K. F. provided administrative support. A. S. participated in the study design and conceptualization and supervised the project. All authors have read and approved the final version of the manuscript.

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilk, A.M. et al. (2024). Improving the Predictive Ability of Radiomics-Based Regression Survival Models Through Incorporating Multiple Regions of Interest. In: Strumiłło, P., Klepaczko, A., Strzelecki, M., Bociąga, D. (eds) The Latest Developments and Challenges in Biomedical Engineering. PCBEE 2023. Lecture Notes in Networks and Systems, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-031-38430-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38430-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38429-5

  • Online ISBN: 978-3-031-38430-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation