Conceptual Models and Theories of Design and Development

  • Chapter
  • First Online:
The Design and Development Process

Abstract

Conceptual models and theories regarding the design and development process convey insights about that process on a high level of abstraction and generality, without prescribing in detail how it should be approached. This chapter discusses a selection of such contributions to convey and relate some of the well-known work. An overview of the area covering three levels of scope is provided: the micro-level, concerning the individual designer’s thought processes when undertaking generic design activity; the meso-level, concerning how the work changes as a design progresses; and the macro level, at which the design and development process is conceptualised as a complex system in itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some content of this chapter is substantially extended from sections of Wynn and Clarkson (2018) under license CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

  2. 2.

    Sects. 7.4.2.27.4.2.4 are adapted from sections of Wynn and Maier (2022) under license CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/). With acknowledgement to A. M. Maier.

References

  • Agogué, M., & Kazakçi, A. (2014). 10 years of C-K theory: A survey on the academic and industrial impacts of a design theory. In A. Chakrabarti, & M. L. T. Blessing (Eds.), An anthology of theories and models of design: Philosophy, approaches and empirical explorations (pp. 219–235). London: Springer. https://doi.org/10.1007/978-1-4471-6338-1_11.

  • Albers, A., & Braun, A. (2011). A generalised framework to compass and to support complex product engineering processes. International Journal of Product Development, 15(1–3), 6–25. https://doi.org/10.1504/IJPD.2011.043659.

  • Albers, A., Behrendt, M., Klingler, S., Reiß, N., & Bursac, N. (2017). Agile product engineering through continuous validation in PGE-Product Generation Engineering. Design Science, 3, e5. https://doi.org/10.1017/dsj.2017.5.

  • Albers, A., Reiss, N., Bursac, N., & Richter, T. (2016). IPeM-integrated product engineering model in context of product generation engineering. Procedia CIRP, 50, 100–105. https://doi.org/10.1016/j.procir.2016.04.168.

  • Andreasen, M. M. (2011). 45 years with design methodology. Journal of Engineering Design, 22(5), 293–332. https://doi.org/10.1080/09544828.2010.538040.

  • Andreasen, M. M., Hansen, C. T., & Cash, P. (2015). Conceptual design: Interpretations, mindset and models. London: Springer. https://doi.org/10.1007/978-3-319-19839-2.

  • Beer, S. (1995). Brain of the firm (3rd ed.). London: Wiley.

    Google Scholar 

  • Birmingham, R. (1997). Understanding engineering design: Context, theory and practice. London: Prentice Hall.

    Google Scholar 

  • Braha, D., & Maimon, O. (1998). A mathematical theory of design: Foundations, algorithms and applications. New York: Springer. https://doi.org/10.1007/978-1-4757-2872-9.

  • Braha, D., & Reich, Y. (2003). Topological structures for modeling engineering design processes. Research in Engineering Design, 14(4), 185–199. https://doi.org/10.1007/s00163-003-0035-3.

  • Brocklesby, J., Cummings, S., & Davies, J. (1995). Demystifying the viable systems model as a tool for organizational analysis. Asia-Pacific Journal of Operational Research, 12(1), 65–86.

    MATH  Google Scholar 

  • Bucciarelli, L. L. (2002). Between thought and object in engineering design. Design Studies, 23(3), 219–231. https://doi.org/10.1016/S0142-694X(01)00035-7.

  • Buur, J. (1990). A theoretical approach to mechatronics design. Ph.D. dissertation, Technical University of Denmark.

    Google Scholar 

  • Buur, J., & Andreasen, M. M. (1989). Design models in mechatronic product development. Design Studies, 10(3), 155–162. https://doi.org/10.1016/0142-694X(89)90033-1.

  • Chakrabarti, A., Sarkar, P., Leelavathamma, B., & Nataraju, B. (2005). A functional representation for aiding biomimetic and artificial inspiration of new ideas. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 19(2), 113–132. https://doi.org/10.1017/S0890060405050109.

  • Chandrasekaran, B. (1990). Design problem solving: A task analysis. AI Magazine, 11(4), 59–71. https://doi.org/10.1609/aimag.v11i4.857.

  • Chiva-Gomez, R. (2004). Repercussions of complex adaptive systems on product design management. Technovation, 24(9), 707–711. https://doi.org/10.1016/S0166-4972(02)00155-4.

  • Clancey, W. J. (1997). Situated cognition: On human knowledge and computer representations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Crilly, N. (2021). The evolution of “co-evolution” (part I): Problem solving, problem finding, and their interaction in design and other creative practices. She Ji: The Journal of Design, Economics, and Innovation, 7(3), 309–332. https://doi.org/10.1016/j.sheji.2021.07.003.

  • Cross, N. (1997). Descriptive models of creative design: Application to an example. Design Studies, 18(4), 427–440. https://doi.org/10.1016/S0142-694X(97)00010-0.

  • Cross, N. (2008). Engineering design methods: Strategies for product design, (4th ed.). Chichester: Wiley.

    Google Scholar 

  • Darke, J. (1979). The primary generator and the design process. Design Studies, 1(1), 36–44. https://doi.org/10.1016/0142-694X(79)90027-9.

  • Dong, A. (2004). Design as a socio-cultural cognitive system. In D. Marjanović (Ed.), DS 32: Proceedings of DESIGN 2004, the 8th International Design Conference, Dubrovnik, Croatia (pp. 1467–1474). Design Society.

    Google Scholar 

  • Dorst, K., & Cross, N. (2001). Creativity in the design process: Co-evolution of problem-solution. Design Studies, 22(5), 425–437. https://doi.org/10.1016/S0142-694X(01)00009-6.

  • Doumeingts, G., Girard, P., & Eynard, B. (1996). GIM: GRAI integrated methodology for product development. In G. Q. Huang (Ed.), Design for X: Concurrent engineering imperatives (pp. 153–172). Dordrecht: Springer. https://doi.org/10.1007/978-94-011-3985-4_8.

  • Eder, W. E. (2011). Engineering design science and theory of technical systems: Legacy of Vladimir Hubka. Journal of Engineering Design, 22(5), 361–385. https://doi.org/10.1080/09544828.2010.522558.

  • Eder, W. E., & Hosnedl, S. (2010). Introduction to design engineering: Systematic creativity and management. London: CRC Press. https://doi.org/10.1201/b10536.

  • Elezi, F. (2015). Supporting the design of management control systems in engineering companies from management cybernetics perspective. Ph.D. dissertation, Technical University of Munich.

    Google Scholar 

  • Fischer, T., & Herr, C. M. (2019). Design cybernetics: Navigating the new. Cham: Springer. https://doi.org/10.1007/978-3-030-18557-2.

  • Frost, R. B. (1992). A converging model of the design process: Analysis and creativity, the ingredients of synthesis. Journal of Engineering Design, 3(2), 117–126. https://doi.org/10.1080/09544829208914751.

  • Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design. AI Magazine, 11(4), 26–36. https://doi.org/10.1609/aimag.v11i4.854.

  • Gero, J. S. (1998). Conceptual designing as a sequence of situated acts. In I. Smith (Ed.), Artificial intelligence in structural engineering: Information technology for design, collaboration, maintenance, and monitoring (pp. 165–177). Berlin, Heidelberg: Springer. https://doi.org/10.1007/BFb0030450.

  • Gero, J. S. (2000). Computational models of innovative and creative design processes. Technological Forecasting and Social Change, 64(2–3), 183–196. https://doi.org/10.1016/S0040-1625(99)00105-5.

  • Gero, J. S., & Kannengiesser, U. (2004). The situated function-behaviour-structure framework. Design Studies, 25(4), 373–391. https://doi.org/10.1016/j.destud.2003.10.010.

  • Gero, J. S., & Kannengiesser, U. (2014). The function-behaviour-structure ontology of design. In A. Chakrabarti, & L. T. M. Blessing (Eds.), An anthology of theories and models of design: Philosophy, approaches and empirical explorations (pp. 263–283). London: Springer. https://doi.org/10.1007/978-1-4471-6338-1_13.

  • Geyer, F. (1995). The challenge of sociocybernetics. Kybernetes, 24(4), 6–32. https://doi.org/10.1108/03684929510089321.

  • Girard, P., & Doumeingts, G. (2004). Modelling the engineering design system to improve performance. Computers & Industrial Engineering, 46(1), 43–67. https://doi.org/10.1016/j.cie.2003.09.008.

  • Goel, V., & Pirolli, P. (1992). The structure of design problem spaces. Cognitive Science, 16(3), 395–429. https://doi.org/10.1207/s15516709cog1603_3.

  • Grabowski, H., Lossack, R.-S., & El-Mejbri, E.-F. (1999). Towards a universal design theory. In H. Kals and F. van Houten (Eds.), Integration of Process Knowledge into Design Support Systems: Proceedings of the 1999 CIRP International Design Seminar, University of Twente, Enschede, The Netherlands, 24–26 March, 1999 (pp. 47–56). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-1901-8_2.

  • Grabowski, H., Lossack, R.-S., & Weis, C. (1996). A design process model based on design working spaces. In T. Tomiyama, M. Mäntylä, & S. Finger (Eds.), Knowledge intensive CAD (Vol. 1, pp. 244–262). Boston: Springer. https://doi.org/10.1007/978-0-387-34930-5_16.

  • Guindon, R. (1990). Designing the design process: Exploiting opportunistic thoughts. Human-Computer Interaction, 5(2), 305–344. https://doi.org/10.1080/07370024.1990.9667157.

  • Hamraz, B., Caldwell, N. H., Wynn, D. C., & Clarkson, P. J. (2013). Requirements-based development of an improved engineering change management method. Journal of Engineering Design, 24(11), 765–793. https://doi.org/10.1080/09544828.2013.834039,

  • Hatchuel, A., & Weil, B. (2003). A new approach of innovative design: An introduction to C-K theory. In A. Folkeson, K. Gralen, M. Norell, & U. Sellgren (Eds.), DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering Design, Stockholm (pp. 109–110). Design Society.

    Google Scholar 

  • Hatchuel, A., & Weil, B. (2009). C-K design theory: An advanced formulation. Research in Engineering Design, 19(4), 181–192. https://doi.org/10.1007/s00163-008-0043-4.

  • Hatchuel, A., Le Masson, P., & Weil, B. (2004). C-K theory in practice: Lessons from industrial applications. In D. Marjanović (Ed.), DS 32: Proceedings of DESIGN 2004, the 8th International Design Conference, Dubrovnik, Croatia (pp. 245–258). Design Society.

    Google Scholar 

  • Hay, L., Duffy, A. H. B., McTeague, C., Pidgeon, L. M., Vuletic, T., & Grealy, M. (2017). A systematic review of protocol studies on conceptual design cognition: Design as search and exploration. Design Science, 3, e10. https://doi.org/10.1017/dsj.2017.11.

  • Hillier, B., Musgrove, J., & O’Sullivan, P. (1972). Knowledge and design. In W. J. Mitchell (Ed.), Environmental design: research and practice. Proceedings of the EDRA 3/AR 8 Conference, University of California at Los Angeles, January 1972 (pp. 1–14). University, Verlag.

    Google Scholar 

  • Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design Studies, 29(2), 160–180. https://doi.org/10.1016/j.destud.2008.01.001.

  • Hubka, V., & Eder, W. E. (1988). Theory of technical systems: A total concept theory for engineering design. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-52121-8.

  • Hybs, I., & Gero, J. S. (1992). An evolutionary process model of design. Design Studies, 13(3), 273–290. https://doi.org/10.1016/0142-694X(92)90216-W.

  • Jones, J. C. (1992). Design methods: Seeds of human futures (2nd ed.). London: Wiley.

    Google Scholar 

  • Kazakçi, A. O. (2009). A formalization of CK design theory based on intuitionist logic. In A. Chakrabarti (Ed.), ICORD 09: Proceedings of the 2nd International Conference on Research into Design, Bangalore, India 07–09 Jan 2009 (pp. 499–507). Design Society.

    Google Scholar 

  • Kleinsmann, M., & Valkenburg, R. (2008). Barriers and enablers for creating shared understanding in co-design projects. Design Studies, 29, 369–386. https://doi.org/10.1016/j.destud.2008.03.003.

  • Kleinsmann, M., Buijs, J., & Valkenburg, R. (2010). Understanding the complexity of knowledge integration in collaborative new product development teams: A case study. Journal of Engineering and Technology Management, 27(1–2), 20–32. https://doi.org/10.1016/j.jengtecman.2010.03.003.

  • Köhler, C., Conrad, J., Wanke, S., & Weber, C. (2008). A matrix representation of the cpm/pdd approach as a means for change impact analysis. In D. Marjanovic, M. Storga, N. Pavkovic, & N. Bojcetic (Eds.), DS 48: Proceedings DESIGN 2008, the 10th International Design Conference, Dubrovnik, Croatia (pp. 167–174). The Design Society.

    Google Scholar 

  • Kulak, O., Cebi, S., & Kahraman, C. (2010). Applications of axiomatic design principles: A literature review. Expert Systems With Applications, 37(9), 6705–6717. https://doi.org/10.1016/j.eswa.2010.03.061.

  • Lawson, B. (2005). How designers think: The design process demystified (4th ed.). London: Routledge. https://doi.org/10.4324/9780080454979.

  • Le Masson, P., Weil, B., & Hatchuel, A. (2017). Design theory: Methods and organization for innovation. Cham: Springer. https://doi.org/10.1007/978-3-319-50277-9.

  • Love, T. (2002). Constructing a coherent cross-disciplinary body of theory about designing and designs: Some philosophical issues. Design Studies, 23(3), 345–361. https://doi.org/10.1016/S0142-694X(01)00043-6.

  • Maher, M. L. (2000). A model of co-evolutionary design. Engineering with Computers, 16, 195–208. https://doi.org/10.1007/PL00013714.

  • Maher, M. L., & Poon, J. (1996). Modeling design exploration as coevolution. Computer-Aided Civil and Infrastructure Engineering, 11, 195–209. https://doi.org/10.1111/j.1467-8667.1996.tb00323.x.

  • Maher, M. L., Poon, J., & Boulanger, S. (1996). Formalising design exploration as co-evolution. In J. S. Gero, & F. Sudweeks (Eds.), Advances in Formal Design Methods for CAD: Proceedings of the IFIP WG5.2 Workshop on Formal Design Methods for Computer-Aided Design, June 1995 (pp. 3–30). Boston: Springer. https://doi.org/10.1007/978-0-387-34925-1_1.

  • Maier, A. M., Wynn, D. C., Andreasen, M. M., & and Clarkson, P. J. (2012). A cybernetic perspective on methods and process models in collaborative designing. In D. Marjanović, M. Štorga, N. Pavković, & N. Bojčetić (Eds.), DS 70: Proceedings of DESIGN 2012, the 12th International Design Conference, Dubrovnik, Croatia (pp. 233–240). Design Society.

    Google Scholar 

  • Maier, A. M., Wynn, D. C., Howard, T. J., & Andreasen, M. M. (2014). Perceiving design as modelling: A cybernetic systems perspective. In A. Chakrabarti, & L. T. M. Blessing (Eds.), An anthology of theories and models of design: Philosophy, approaches and empirical explorations (pp. 133–149). London: Springer. https://doi.org/10.1007/978-1-4471-6338-1_7.

  • Malmiry, R. B., Pailhès, J., Qureshi, A. J., Antoine, J.-F., & Dantan, J.-Y. (2016). Management of product design complexity due to epistemic uncertainty via energy flow modelling based on CPM. CIRP Annals, 65(1), 169–172. https://doi.org/10.1016/j.cirp.2016.04.048.

  • March, L. (1984). The logic of design. In N. Cross (Ed.), Developments in design methodology (pp. 265–276). Chichester NY: Wiley.

    Google Scholar 

  • Martinec, T., Škec, S., Horvat, N., & Štorga, M. (2019). A state-transition model of team conceptual design activity. Research in Engineering Design, 30(1), 103–132. https://doi.org/10.1007/s00163-018-00305-1.

  • McCarthy, I. P., Tsinopoulos, C., Allen, P., & Rose-Anderssen, C. (2006). New product development as a complex adaptive system of decisions. Journal of Product Innovation Management, 23(5), 437–456. https://doi.org/10.1111/j.1540-5885.2006.00215.x.

  • Merlo, C., & Girard, P. (2004). Information system modelling for engineering design co-ordination. Computers in Industry, 55(3), 317–334. https://doi.org/10.1016/j.compind.2004.08.008.

  • Naumann, T., & Vajna, S. (2004a). Adaptive system management. In S. Vajna (Ed.), IPD 2004: Proceedings of the 5th Workshop on Integrated Product Development, Magdeburg, Germany, 22–24 Sept. Design Society.

    Google Scholar 

  • Naumann, T., & Vajna, S. (2004b). Adaptive system management. In D. Marjanović (Ed.), Proceedings of DESIGN 2004, the 8th International Design Conference, Dubrovnik, Croatia, May 18–21. Design Society.

    Google Scholar 

  • Negele, H., Fricke, E., & Igenbergs, E. (1997). ZOPH–a systemic approach to the modeling of product development systems. INCOSE International Symposium, 7(1), 266–273. https://doi.org/10.1002/j.2334-5837.1997.tb02181.x.

  • Newell, A. (1981). The knowledge level: Presidential address. AI Magazine, 2(2), 1–20. https://doi.org/10.1609/aimag.v2i2.99.

  • O’Donnell, F. J., & Duffy, A. H. B. (2002). Modelling design development performance. International Journal of Operations & Production Management, 22(11), 1198–1221. https://doi.org/10.1108/01443570210450301.

  • O’Donnell, F. J., & Duffy, A. H. B. (2005). Design performance. London: Springer. https://doi.org/10.1007/1-84628-147-4.

  • Pask, G. (1969). The meaning of cybernetics in the behavioural sciences (The cybernetics of behaviour and cognition; extending the meaning of “goal”). In J. Rose (Ed.), Progress of cybernetics (pp. 15–44). London: Gordon Breach Science Publishers.

    Google Scholar 

  • Pask, G. (1976). Conversation theory: Applications in education and epistemology. Amsterdam: Elsevier Scientific Publishing Company.

    Google Scholar 

  • Peirce, C. (1923). Chance, Love, and Logic: Philosophical Essays. London: Routledge. Edited by Morris R. Cohen & John Dewey.

    Google Scholar 

  • Pulm, U. (2005). Product development as a complex social system. In A. Samuel and W. Lewis (Eds.), DS 35: Proceedings ICED 05, the 15th International Conference on Engineering Design, Melbourne, Australia, 15–18 Aug 2005 (pp. 407–408). Design Society.

    Google Scholar 

  • Reich, Y. (1995). A critical review of general design theory. Research in Engineering Design, 7, 1–18. https://doi.org/10.1007/BF01681909.

  • Reich, Y., & Subrahmanian, E. (2022). The PSI framework and theory of design. IEEE Transactions on Engineering Management, 69(4), 1037–1049. https://doi.org/10.1109/TEM.2020.2973238.

  • Salustri, F. A. (2014). Reformulating CK theory with an action logic. In J. S. Gero (Ed.), Design Computing and Cognition’12 (pp. 433–450). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9112-0_24.

  • Schön, D. A. (1992). The reflective practitioner: How professionals think in action. London: Routledge. https://doi.org/10.4324/9781315237473.

  • Schön, D. A., & Wiggins, G. (1992). Kinds of seeing and their functions in designing. Design Studies, 13(2), 135–156. https://doi.org/10.1016/0142-694X(92)90268-F.

  • Scott, B. (2001). Gordon Pask’s conversation theory: A domain independent constructivist model of human knowing. Foundations of Science, 6(4), 343–360. https://doi.org/10.1023/A:1011667022540.

  • Scott, B. (2004). Second-order cybernetics: An historical introduction. Kybernetes, 33(9/10), 1365–1378. https://doi.org/10.1108/03684920410556007.

  • Sim, S. K., & Duffy, A. H. B. (2003). Towards an ontology of generic engineering design activities. Research in Engineering Design, 14, 200–223. https://doi.org/10.1007/s00163-003-0037-1.

  • Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence, 4(3–4), 181–201. https://doi.org/10.1016/0004-3702(73)90011-8.

  • Siyam, G. I., Wynn, D. C., & Clarkson, P. J. (2015). Review of value and lean in complex product development. Systems Engineering, 18(2), 192–207. https://doi.org/10.1002/sys.21299.

  • Smithers, T. (1998). Towards a knowledge level theory of design process. In J. Gero, & F. Sudweeks (Eds.), Artificial Intelligence in Design’98 (pp. 3–21). Dordrecht: Springer. https://doi.org/10.1007/978-94-011-5121-4_1.

  • Srinivasan, V., & Chakrabarti, A. (2010). An integrated model of designing. Journal of Computing and Information Science in Engineering, 10(3), 031013. https://doi.org/10.1115/1.3467011.

  • Stacey, R. D. (1995). The science of complexity: An alternative perspective for strategic change processes. Strategic Management Journal, 16(6), 477–495. https://doi.org/10.1002/smj.4250160606.

  • Suh, N. P. (1990). The principles of design. New York: Oxford University Press.

    Google Scholar 

  • Takeda, H., Veerkamp, P., & Yoshikawa, H. (1990). Modeling design process. AI Magazine, 11(4), 37. https://doi.org/10.1609/aimag.v11i4.855.

  • Tomiyama, T. (1994). From general design theory to knowledge-intensive engineering. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 8(04), 319–333. https://doi.org/10.1017/S0890060400000998.

  • Tomiyama, T., Kiriyama, T., Takeda, H., Xue, D., & Yoshikawa, H. (1989). Metamodel: A key to intelligent CAD systems. Research in Engineering Design, 1(1), 19–34. https://doi.org/10.1007/BF01580000.

  • Tsoukas, H., & Cunha, M. P. (2017). On organizational circularity: Vicious and virtuous cycles in organizing. In W. Smith, M. Lewis, P. Jarzabkowski, & A. Langley (Eds.), The Oxford handbook of organizational paradox: Approaches to plurality, tensions, and contradictions (pp. 393–412). New York: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198754428.013.20

  • Ullman, D. G., Dietterich, T. G., & Stauffer, L. A. (1988). A model of the mechanical design process based on empirical data. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2(1), 33–52. https://doi.org/10.1017/S0890060400000536.

  • Umpleby, S. A. (1997). Cybernetics of conceptual systems. Cybernetics and Systems, 28(8), 635–651. https://doi.org/10.1080/019697297125886.

  • Vajna, S., Clement, S., Jordan, A., & Bercsey, T. (2005). The autogenetic design theory: An evolutionary view of the design process. Journal of Engineering Design, 16(4), 423–440. https://doi.org/10.1080/09544820500267781.

  • Visser, W. (2009). Design: One, but in different forms. Design Studies, 30(3), 187–223. https://doi.org/10.1016/j.destud.2008.11.004.

  • von Foerster, H. (2003). Understanding understanding: Essays on cybernetics and cognition. New York: Springer. https://doi.org/10.1007/b97451.

  • Weber, C. (2014). Modelling products and product development based on characteristics and properties. In A. Chakrabarti, & L. T. M. Blessing (Eds.), An anthology of theories and models of design: Philosophy, approaches and empirical explorations (pp. 327-352). London: Springer. https://doi.org/10.1007/978-1-4471-6338-1_16.

  • Weber, C., Werner, H., & Deubel, T. (2003). A different view on product data management/product life-cycle management and its future potentials. Journal of Engineering Design, 14(4), 447–464. https://doi.org/10.1080/09544820310001606876.

  • Wiener, N. (1948). Cybernetics or control and communication in the animal and the machine. New York: Wiley.

    Google Scholar 

  • Wilberg, J., Tommelein, I. D., Elezi, F., & Lindemann, U. (2015). Supporting the implementation of engineering change management with the viable system model. In 2015 IEEE International Conference on Systems, Man, and Cybernetics (pp. 731–736). https://doi.org/10.1109/SMC.2015.137.

  • Wynn, D., & Clarkson, J. (2005). Models of designing. In J. Clarkson, & C. Eckert (Eds.), Design process improvement: A review of current practice (pp. 34–59). London: Springer. https://doi.org/10.1007/978-1-84628-061-0_2.

  • Wynn, D. C., & Clarkson, P. J. (2018). Process models in design and development. Research in Engineering Design, 29(2), 161–202. https://doi.org/10.1007/s00163-017-0262-7.

  • Wynn, D. C., & Eckert, C. M. (2017). Perspectives on iteration in design and development. Research in Engineering Design, 28(2), 153–184. https://doi.org/10.1007/s00163-016-0226-3.

  • Wynn, D. C., & Maier, A. M. (2022). Feedback systems in the design and development process. Research in Engineering Design, 33(3), 273–306. https://doi.org/10.1007/s00163-022-00386-z.

  • Yoshikawa, H. (1981). General design theory and a CAD system. In T. Sata, & E. Warman (Eds.), Man-Machine communication in CAD/CAM: Proceedings of the IFIP WG5.2-5.3 Working Conference held in Tokyo, Japan, 2–4 October 1980. North-Holland Publishing Company.

    Google Scholar 

  • Zeng, Y. (2002). Axiomatic theory of design modeling. Journal of Integrated Design & Process Science, 6(3), 1–28.

    Google Scholar 

  • Zeng, Y., & Cheng, G. (1991). On the logic of design. Design Studies, 12(3), 137–141. https://doi.org/10.1016/0142-694X(91)90022-O.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Wynn .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wynn, D.C., Clarkson, P.J. (2024). Conceptual Models and Theories of Design and Development. In: The Design and Development Process. Springer, Cham. https://doi.org/10.1007/978-3-031-38168-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38168-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38167-6

  • Online ISBN: 978-3-031-38168-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation