Context of the Design and Development Process

  • Chapter
  • First Online:
The Design and Development Process

Abstract

Design and development occurs in many contexts but is also highly varied, with each situation exhibiting different combinations of characteristics and issues that might need to be addressed. This chapter identifies three groups of factors that characterise the design and development context and discusses thirteen individual factors sampled from these groups. Some key concepts and implications for the design and development process are outlined for each factor. The chapter highlights some of the many issues that need to be considered and integrated during design and development and underlines the complexity of the task. It also sets the scene for a discussion of perspectives, approaches and models in the chapters that follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar, O. A., Tarakci, M., & van Knippenberg, D. (2019). Creativity and innovation under con straints: A cross-disciplinary integrative review. Journal of Management 45(1), 96–121. https://doi.org/10.1177/0149206318805832

  • Alonso-Rasgado, T., Thompson, G., & Elfström, B.-O. (2004). The design of functional (total care) products. Journal of Engineering Design, 15(6), 515–540. https://doi.org/10.1080/09544820412331271176

  • Baines, T. S., Lightfoot, H. W., Evans, S., Neely, A., Greenough, R., Peppard, J. et al. (2007). State-of-the-art in product-service systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(10), 1543–1552. https://doi.org/10.1243/09544054JEM858

  • Baines, T. S., Lightfoot, H. W., Benedettini, O., & Kay, J. M. (2009). The servitization of manufacturing: A review of literature and reflection on future challenges. Journal of Manufacturing Technology Management, 20(5), 547–567. https://doi.org/10.1108/17410380910960984

  • Bartels, B., Ermel, U., Sandborn, P., & Pecht, M. G. (2012). Strategies to the prediction, mitigation and management of product obsolescence. Hoboken: Wiley. https://doi.org/10.1002/9781118275474

  • Boardman, J., & Sauser, B. (2006). System of systems - the meaning of of. In 2006 IEEE/SMC International Conference on System of Systems Engineering. Los Angeles, CA, USA, 2006. https://doi.org/10.1109/SYSOSE.2006.1652284

  • Browning, T. R., & Honour, E. C. (2008). Measuring the life-cycle value of enduring systems. Systems Engineering, 11(3), 187–202. https://doi.org/10.1002/sys.20094

  • Bucciarelli, L. L. (2002). Between thought and object in engineering design. Design Studies, 23(3), 219–231. https://doi.org/10.1016/S0142-694X(01)00035-7

  • Buchanan, R. (2001). Design research and the new learning. Design Issues, 17(4), 3–23. https://doi.org/10.1162/07479360152681056

    Article  Google Scholar 

  • Buchanan, R. (2018). Creativity and principles in the flourishing organisation. Enterprise UX 2018, (Closing keynote), 4–22. https://www.youtube.com/watch?v=-Hlue5U88VU

  • Camburn, B., Viswanathan, V., Linsey, J., Anderson, D., Jensen, D., Crawford, R., Otto, K., & Wood, K. (2017). Design prototy** methods: State of the art in strategies, techniques, and guidelines. Design Science, 3, e13. https://doi.org/10.1017/dsj.2017.10

  • Cantamessa, M., & Montagna, F. (2016). Management of innovation and product development: Integrating business and technological perspectives. London: Springer. https://doi.org/10.1007/978-1-4471-6723-5

  • Cantamessa, M., Montagna, F., Altavilla, S., & Casagrande-Seretti, A. (2020). Data-driven design: The new challenges of digitalization on product design and development. Design Science, 6, e27. https://doi.org/10.1017/dsj.2020.25

    Article  Google Scholar 

  • Cardin, M.-A. (2013). Enabling flexibility in engineering systems: A taxonomy of procedures and a design framework. Journal of Mechanical Design, 136(1), 011005. https://doi.org/10.1115/1.4025704

  • Chalupnik, M. J., Wynn, D. C., & Clarkson, P. J. (2013). Comparison of ilities for protection against uncertainty in system design. Journal of Engineering Design, 24(12), 814–829. https://doi.org/10.1080/09544828.2013.851783

  • Clark, K. B. (1989). Project scope and project performance: The effect of parts strategy and supplier involvement on product development. Management Science, 35(10), 1247–1263. https://doi.org/10.1287/mnsc.35.10.1247

  • Clarkson, P. J., Coleman, R., Keates, S., & Lebbon, C. (2013). Inclusive design: Design for the whole population. London: Springer. https://doi.org/10.1007/978-1-4471-0001-0

  • De Weck, O. L., Roos, D., & Magee, C. L. (2011). Engineering systems: Meeting human needs in a complex technological world. Cambridge: MIT Press. https://doi.org/10.7551/mitpress/8799.001.0001

  • Eckert, C. M., Blackwell, A. F., Bucciarelli, L. L., & Earl, C. F. (2010). Shared conversations across design. Design Issues, 26(3), 27–39. https://doi.org/10.1162/DESI_a_00027

  • Eckert, C. M., & Clarkson, P. J. (2010). Planning development processes for complex products. Research in Engineering Design, 21(3), 153–171. https://doi.org/10.1007/s00163-009-0079-0

  • Eckert, C., & Clarkson, J. (2005). The reality of design. In Clarkson, J., & Eckert, C. (Eds.), Design process improvement: A review of current practice (pp. 1–29). London: Springer. https://doi.org/10.1007/978-1-84628-061-0_1

  • Eckert, C. M., Stacey, M., Wyatt, D., & Garthwaite, P. (2012). Change as little as possible: Creativity in design by modification. Journal of Engineering Design, 23(4), 337–360. https://doi.org/10.1080/09544828.2011.639299

  • Engel, A. (2010). Verification, validation, and testing of engineered systems. Hoboken, NJ: Wiley. https://doi.org/10.1002/9780470618851

  • Ep**er, S. D., Whitney, D. E., Smith, R. P., & Gebala, D. A. (1994). A model-based method for organizing tasks in product development. Research in Engineering Design, 6(1), 1–13. https://doi.org/10.1007/BF01588087

  • Fine, C. H., & Whitney, D. E. (1996). Is the make-buy decision process a core competence? (Tech. rep.). Boston, MA: MIT Center for Technology, Policy, and Industrial Development.

    Google Scholar 

  • Fixson, S. K. (2007). Modularity and commonality research: Past developments and future opportunities. Concurrent Engineering: Research and Applications, 15(2), 85–111. https://doi.org/10.1177/1063293X07078935

  • Fricke, E., & Schulz, A. P. (2005). Design for Changeability (DfC): Principles to enable changes in systems throughout their entire lifecycle. Systems Engineering, 8(4), 342–359. https://doi.org/10.1002/sys.20039

  • Gershenson, J. K., Prasad, G. J., & Zhang, Y. (2003). Product modularity: Definitions and benefits. Journal of Engineering Design, 14(3), 295–313. https://doi.org/10.1080/0954482031000091068

  • Goh, Y. M., & McMahon, C. (2009). Improving reuse of in-service information capture and feedback. Journal of Manufacturing Technology Management, 20(5), 626–639. https://doi.org/10.1108/17410380910961028

  • Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Kahlen, F.-J., Flumerfelt, S., & Alves, A. (Eds.), Transdisciplinary perspectives on complex systems: New findings and approaches (pp. 85–113). Cham: Springer. https://doi.org/10.1007/978-3-319-38756-7_4

  • Griffin, A. (1997). The effect of project and process characteristics on product development cycle time. Journal of Marketing Research, 34(1), 24–35. https://doi.org/10.1177/002224379703400103

  • Hallstedt, S. I., Isaksson, O., & Öhrwall Rönnbäck, A. (2020). The need for new product development capabilities from digitalization, sustainability, and servitization trends. Sustainability, 12(23), 10222. https://doi.org/10.3390/su122310222

  • Handfield, R. B., Ragatz, G. L., Petersen, K. J., & Monczka, R. M. (1999). Involving suppliers in new product development. California Management Review, 42(1), 59–82. https://doi.org/10.2307/41166019

  • Hölttä, K., Suh, E. S., & de Weck, O. (2005). Tradeoff between modularity and performance for engineered systems and products. In Samuel, A., & Lewis, W. (Eds.), DS 35: Proceedings ICED 05, the 15th International Conference on Engineering Design, Melbourne, Australia (pp. 449–450). The Design Society.

    Google Scholar 

  • Hubka, V., & Eder, W. E. (1996). Design science: Introduction to the needs, scope and organization of engineering design knowledge. London: Springer. https://doi.org/10.1007/978-1-4471-3091-8

  • Hubka, V., & Eder, W. E. (1988). Theory of technical systems: A total concept theory for engineering design. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-52121-8

  • IDEO. (2015). The field guide to human-centered design. San Francisco: IDEO.org.

    Google Scholar 

  • Isaksson, O., Wynn, D. C., & Eckert, C. M. (2022). Design perspectives, theories and processes for engineering systems design. In A. Maier, J. Oehmen, & P. E. Vermaas (Eds.), Handbook of engineering systems design (pp. 53–99). Cham: Springer. https://doi.org/10.1007/978-3-030-81159-4_3

  • Isaksson, O., Larsson, T. C., & Rönnbäck, A. Ö. (2009). Development of product-service systems: Challenges and opportunities for the manufacturing firm. Journal of Engineering Design, 20(4), 329–348. https://doi.org/10.1080/09544820903152663

    Article  Google Scholar 

  • Jagtap, S. (2022). Codesign in resource-limited societies: Theoretical perspectives, inputs, outputs and influencing factors. Research in Engineering Design, 33(2), 191–211. https://doi.org/10.1007/s00163-022-00384-1

  • Jiao, J., Simpson, T. W., & Siddique, Z. (2007). Product family design and platform-based product development: A state-of-the-art review. Journal of Intelligent Manufacturing, 18(1), 5–29. https://doi.org/10.1007/s10845-007-0003-2

  • Jiao, R., Commuri, S., Panchal, J., Milisavljevic-Syed, J., Allen, J. K., Mistree, F., & Schaefer, D. (2021). Design engineering in the age of industry 4.0. Journal of Mechanical Design, 143(7), 070801. https://doi.org/10.1115/1.4051041

  • Johnsen, T. E. (2009). Supplier involvement in new product development and innovation: Taking stock and looking to the future. Journal of Purchasing and Supply Management, 15(3), 187–197. https://doi.org/10.1016/j.pursup.2009.03.008

  • Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the digital twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, Part A, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002

  • Kahn, K. B. (1996). Interdepartmental integration: A definition with implications for product development performance. Journal of Product Innovation Management, 13(2), 137–151. https://doi.org/10.1016/0737-6782(95)00110-7

  • Keating, C., Rogers, R., Unal, R., Dryer, D., Sousa-Poza, A., Safford, R., Peterson, W., & Rabadi, G. (2003). System of systems engineering. Engineering Management Journal, 15(3), 36–45. https://doi.org/10.1080/10429247.2003.11415214

  • Kent, L., Snider, C., Gopsill, J., & Hicks, B. (2021). Mixed reality in design prototy**: A systematic review. Design Studies, 77, 101046. https://doi.org/10.1016/j.destud.2021.101046

  • Kouprie, M., & Visser, F. S. (2009). A framework for empathy in design: Step** into and out of the user’s life. Journal of Engineering Design, 20(5), 437–448. https://doi.org/10.1080/09544820902875033

  • Lo, C., Chen, C., & Zhong, R. Y. (2021). A review of digital twin in product design and development. Advanced Engineering Informatics, 48, 101297. https://doi.org/10.1016/j.aei.2021.101297

  • Love, T. (2002). Constructing a coherent cross-disciplinary body of theory about designing and designs: Some philosophical issues. Design Studies, 23(3), 345–361. https://doi.org/10.1016/S0142-694X(01)00043-6

  • Luo, J. (2015). The united innovation process: Integrating science, design, and entrepreneurship as sub-processes. Design Science, 1, e2. https://doi.org/10.1017/dsj.2015.2

  • Madni, A. M., & Sievers, M. (2014). Systems integration: Key perspectives, experiences, and challenges. Systems Engineering, 17(1), 37–51. https://doi.org/10.1002/sys.21249

  • Magee, C. L., & de Weck, O. L. (2004). Complex system classification. INCOSE International Symposium, 14, 471–488. https://doi.org/10.1002/j.2334-5837.2004.tb00510.x

  • Maier, A., Oehmen, J., & Vermaas, P. E. (2022). Introducing engineering systems design: A new engineering perspective on the challenges of our times. In Maier, A., Oehmen, J., & Vermaas, P. E. (Eds.), Handbook of engineering systems design (pp. 3–32). Cham: Springer. https://doi.org/10.1007/978-3-030-81159-4_1

  • Maier, M. W. (1998). Architecting principles for systems-of-systems. Systems Engineering, 1(4), 267–284. https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D

  • Martin, M. V., & Ishii, K. (2002). Design for variety: Develo** standardized and modularized product platform architectures. Research in Engineering Design, 13(4), 213–235. https://doi.org/10.1007/s00163-002-0020-2

  • McMahon, C. A. (2012). Reflections on diversity in design research. Journal of Engineering Design, 23(8), 563–576. https://doi.org/10.1080/09544828.2012.676634

  • Menold, J., Jablokow, K., & Simpson, T. (2017). Prototype for X (PFX): A holistic framework for structuring prototy** methods to support engineering design. Design Studies, 50, 70–112. https://doi.org/10.1016/j.destud.2017.03.001

  • Mont, O. K. (2002). Clarifying the concept of product-service system. Journal of Cleaner Production, 10(3), 237–245. https://doi.org/10.1016/S0959-6526(01)00039-7

  • Norman, D. A., & Stappers, P. J. (2015). DesignX: Complex sociotechnical systems. She Ji: The Journal of Design, Economics, and Innovation, 1(2), 83–106. https://doi.org/10.1016/j.sheji.2016.01.002

  • Norman, D. A., & Verganti, R. (2014). Incremental and radical innovation: Design research vs. technology and meaning change. Design Issues, 30(1), 78–96. https://doi.org/10.1162/DESI_a_00250

  • Onarheim, B. (2012). Creativity from constraints in engineering design: Lessons learned at Colo plast. Journal of Engineering Design, 23(4), 323–336. https://doi.org/10.1080/09544828.2011.631904

  • Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering design: A systematic approach. London: Springer. https://doi.org/10.1007/978-1-84628-319-2

  • Pessôa, M. V. P., & Becker, J. J. (2020). Smart design engineering: A literature review of the impact of the 4th industrial revolution on product design and development. Research in Engineering Design, 31(2), 175–195. https://doi.org/10.1007/s00163-020-00330-z

  • Petersen, K. J., Handfield, R. B., & Ragatz, G. L. (2005). Supplier integration into new product development: Coordinating product, process and supply chain design. Journal of Operations Management, 23(3), 371–388. https://doi.org/10.1016/j.jom.2004.07.009

  • Pine, B. J. (1993). Mass customizing products and services. Planning Review, 21(4), 6–55. https://doi.org/10.1108/eb054420

  • Pons, D. J., & Raine, J. K. (2005). Design mechanisms and constraints. Research in Engineering Design, 16(1), 73–85. https://doi.org/10.1007/s00163-005-0008-9

  • Porter, M. E., & Heppelmann, J. E. (2015). How smart, connected products are transforming companies. Harvard Business Review, 93(10), 96–114.

    Google Scholar 

  • Pugh, S. (1991). Total design: Integrated methods for successful product engineering. Wokingham: Addison Wesley.

    Google Scholar 

  • Reich, Y., Konda, S., Subrahmanian, E., Cunningham, D., Dutoit, A., Patrick, R., Thomas, M., & Westerberg, A. W. (1999). Building agility for develo** agile design information systems. Research in Engineering Design, 11(2), 67–83. https://doi.org/10.1007/PL00003884

  • Sage, A. P., & Lynch, C. L. (1998). Systems integration and architecting: An overview of princi ples, practices, and perspectives. Systems Engineering, 1(3), 176–227. https://doi.org/10.1002/(SICI)1520-6858(1998)1:3<176::AID-SYS3>3.0.CO;2-L

  • Sandborn, P. (2013). Design for obsolescence risk management. Procedia CIRP, 11, 15–22. https://doi.org/10.1016/j.procir.2013.07.073

    Article  Google Scholar 

  • Sanders, E. B.-N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design. CoDesign, 4(1), 5–18. https://doi.org/10.1080/15710880701875068

  • Sarkar, P., & Chakrabarti, A. (2011). Assessing design creativity. Design Studies, 32(4), 348–383. https://doi.org/10.1016/j.destud.2011.01.002

  • Scudieri, P., & Lilly, B. (2011). A constraint-based model of the design process. In A. Kovacevic, W. Ion, C. McMahon, L. Buck, & P. Hogarth (Eds.), DS 69: Proceedings of E &PDE 2011, the 13th International Conference on Engineering and Product Design Education (pp. 205–210). London, UK.

    Google Scholar 

  • Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467–482. https://www.jstor.org/stable/985254

  • Simpson, T. W., Maier, J. R., & Mistree, F. (2001). Product platform design: Method and application. Research in Engineering Design, 13(1), 2–22. https://doi.org/10.1007/s001630100002

  • Singh, P., & Sandborn, P. (2006). Obsolescence driven design refresh planning for sustainment dominated systems. The Engineering Economist, 51(2), 115–139. https://doi.org/10.1080/00137910600695643

  • Song, X. M., & Montoya-Weiss, M. M. (1998). Critical development activities for really new versus incremental products. Journal of Product Innovation Management, 15(2), 124–135. https://doi.org/10.1111/1540-5885.1520124

  • Sosa, M. E., Ep**er, S. D., & Rowles, C. M. (2003). Identifying modular and integrative systems and their impact on design team interactions. Journal of Mechanical Design, 125(2), 240–252. https://doi.org/10.1115/1.1564074

    Article  Google Scholar 

  • Stacey, M., & Eckert, C. M. (2010). Resha** the box: Creative designing as constraint management. International Journal of Product Development, 11(3/4), 241–255. https://doi.org/10.1504/IJPD.2010.033960

  • Stark, R. (2022). Virtual product creation in industry: The difficult transformation from IT enabler technology to core engineering competence. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-64301-3

  • Steen, M., Manschot, M., & De Koning, N. (2011). Benefits of co-design in service design projects. International Journal of Design, 5(2), 53–60. http://resolver.tudelft.nl/uuid:eefaaa3c-cc7d-408e-9e00-883c6f2ccb03

  • Suh, N. P. (2005). Complexity in engineering. CIRP Annals, 54(2), 46–63. https://doi.org/10.1016/S0007-8506(07)60019-5

  • Tahera, K., Wynn, D. C., Earl, C., & Eckert, C. M. (2019). Testing in the incremental design and development of complex products. Research in Engineering Design, 30(2), 291–316. https://doi.org/10.1007/s00163-018-0295-6

  • Tan, A., Matzen, D., McAloone, T., & Evans, S. (2010). Strategies for designing and develo** services for manufacturing firms. CIRP Journal of Manufacturing Science and Technology, 3(2), 90–97. https://doi.org/10.1016/j.cirpj.2010.01.001

  • Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3563–3576. https://doi.org/10.1007/s00170-017-0233-1

  • Tatikonda, M. V., & Rosenthal, S. R. (2000). Technology novelty, project complexity, and product development project execution success: A deeper look at task uncertainty in product innovation. IEEE Transactions on Engineering Management, 47(1), 74–87. https://doi.org/10.1109/17.820727

  • Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International Journal of Automation Technology, 11(1), 4–16. https://doi.org/10.20965/ijat.2017.p0004

  • Thompson, L. (2018). Forbes. Accessed 19 Jan 2023. https://www.forbes.com/sites/lorenthompson/2018/12/19/pratt-whitneys-geared-turbofan-engine-has-had-a-very-good-year/?sh=233e08417e94

  • Tseng, M. M., Jiao, J., & Merchant, M. E. (1996). Design for mass customization. CIRP Annals, 45(1), 153–156. https://doi.org/10.1016/S0007-8506(07)63036-4

  • Tukker, A. (2004). Eight types of product-service system: Eight ways to sustainability? Experiences from SusProNet. Business Strategy and the Environment, 13(4), 246–260. https://doi.org/10.1002/bse.414

  • Tukker, A. (2015). Product services for a resource-efficient and circular economy - a review. Journal of Cleaner Production, 97, 76–91. https://doi.org/10.1016/j.jclepro.2013.11.049

  • Ulrich, K. T., Ep**er, S. D., & Yang, M. C. (2020). Product design and development (7th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Ulrich, K. (1995). The role of product architecture in the manufacturing firm. Research Policy, 24(3), 419–440. https://doi.org/10.1016/0048-7333(94)00775-3

  • Ulrich, K. T., & Ellison, D. J. (2005). Beyond make-buy: Internalization and integration of design and production. Production and Operations Management, 14(3), 315–330. https://doi.org/10.1111/j.1937-5956.2005.tb00027.x

  • Valencia, A., Mugge, R., Schoormans, J. P. L., & Schifferstein, H. N. J. (2015). The design of smart product service systems (PSSs): An exploration of design characteristics. International Journal of Design, 9(1), 13–28.

    Google Scholar 

  • Visser, W. (2009). Design: One, but in different forms. Design Studies, 30(3), 187–223. https://doi.org/10.1016/j.destud.2008.11.004

  • von Hippel, E. (1988). The sources of innovation. New York: Oxford University Press.

    Google Scholar 

  • Whitney, D. E. (1996). Why mechanical design cannot be like VLSI design. Research in Engineering Design, 8(3), 125–138. https://doi.org/10.1007/BF01608348

  • Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 59, 1–14. https://doi.org/10.1016/j.cad.2014.07.006

  • Zhou, F., Ji, Y., & Jiao, R. J. (2013). Affective and cognitive design for mass personalization: Status and prospect. Journal of Intelligent Manufacturing, 24(5), 1047–1069. https://doi.org/10.1007/s10845-012-0673-2

  • Zolghadri, M., Addouche, S.-A., Baron, C., Soltan, A., & Boissie, K. (2021). Obsolescence, rarefaction and their propagation. Research in Engineering Design, 32(4), 451–468. https://doi.org/10.1007/s00163-021-00372-x

    Article  Google Scholar 

  • Zsidisin, G. A., & Smith, M. E. (2005). Managing supply risk with early supplier involvement: A case study and research propositions. Journal of Supply Chain Management, 41(4), 44–57. https://doi.org/10.1111/j.1745-493X.2005.04104005.x.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Wynn .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wynn, D.C., Clarkson, P.J. (2024). Context of the Design and Development Process. In: The Design and Development Process. Springer, Cham. https://doi.org/10.1007/978-3-031-38168-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38168-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38167-6

  • Online ISBN: 978-3-031-38168-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation