Finite Sections of Periodic Schrödinger Operators

  • Conference paper
  • First Online:
Operators, Semigroups, Algebras and Function Theory (IWOTA 2021)

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 292))

Included in the following conference series:

  • 117 Accesses

Abstract

We study discrete Schrödinger operators H with periodic potentials as they are typically used to approximate aperiodic Schrödinger operators like the Fibonacci Hamiltonian. We prove an efficient test for applicability of the finite section method, a procedure that approximates H by growing finite square submatrices \(H_n\). For integer-valued potentials, we show that the finite section method is applicable as soon as H is invertible. This statement remains true for \(\{0,\lambda \}\)-valued potentials with fixed rational \(\lambda \) and period less than nine as well as for arbitrary real-valued potentials of period two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Baxter, A norm inequality for a ‘finite-section’ Wiener-Hopf equation. Illinois J. Math. 7, 97–103 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. S.N. Chandler-Wilde, M. Lindner, Sufficiency of Favard’s condition for a class of band-dominated operators on the axis. J. Funct. Anal. 254, 1146–1159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. S.N. Chandler-Wilde, M. Lindner, Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices (American Mathematical Society, 2011)

    Google Scholar 

  4. S.N. Chandler-Wilde, M. Lindner, Coburn’s lemma and the finite section method for random Jacobi operators. J. Funct. Anal. 270, 802–841 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Damanik, Gordon-type arguments in the spectral theory of one-dimensional quasi-crystals, in Directions in Mathematical Quasicrystals, ed. by M. Baake, R.V. Moody. CRM Monograph Series, vol. 13 (American Mathematical Society, 2000), pp. 277–304

    Google Scholar 

  6. D. Damanik, Strictly ergodic subshifts and associated operators, in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, ed.by F. Gesztesy, P. Deift, C. Galvez, P. Perry, W. Schlag. Proc. Sympos. Pure Math., vol. 76 (American Mathematical Society, 2007), pp. 505–538

    Google Scholar 

  7. D. Damanik, A. Gorodetski, W. Yessen, The Fibonacci Hamiltonian. Invent. Math. 206, 629–692 (2016)

    Article  Google Scholar 

  8. D. Damanik, Schrödinger operators with dynamically defined potentials. Ergodic Theory Dyn. Syst. 37, 1681–1764 (2017)

    Article  MATH  Google Scholar 

  9. D. Damanik, L. Fang, H. Jun, Schrödinger operators generated by locally constant functions on the Fibonacci subshift. Ann. Henri Poincaré 22, 1459–1498 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. E.B. Davies, Linear Operators and their Spectra (Cambridge University Press, 2007)

    Google Scholar 

  11. M. Embree, J. Fillman, Spectra of discrete two-dimensional periodic Schrödinger operators with small potentials. J. Spectr. Theory 9, 1063–1087 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Gabel, D. Gallaun, J. Großmann, M. Lindner, R. Ukena, Analysis Code for Finite Sections of Periodic Schrödinger Operators (TUHH Universitätsbibliothek, 2021). Available at https://doi.org/10.15480/336.3828

  13. F. Gabel, D. Gallaun, J. Großmann, M. Lindner, R. Ukena, Finite Section Method for Aperiodic Schrödinger Operators, preprint, 2023. Available at https://doi.org/10.48550/ar**v.2104.00711

  14. I. Gohberg, I.A. Feldman, Convolution Equations and Projection Methods for their Solution (American Mathematical Society, 1974)

    Google Scholar 

  15. R. Hagen, S. Roch, B. Silbermann, C*-Algebras and Numerical Analysis (CRC Press, 2000)

    Google Scholar 

  16. R. Hagger, Fredholm theory with applications to random operators, Ph.D. thesis, Technische Universität Hamburg, 2016. Available at https://doi.org/10.15480/882.1272

  17. R. Horn, C. Johnson, Matrix Analysis (Cambridge University Press, 1985)

    Google Scholar 

  18. V.G. Kurbatov, Functional Differential Operators and Equations (Springer, 1999)

    Google Scholar 

  19. Y. Last, B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135, 329–367 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Lindner, Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method (Birkhäuser, 2006)

    Google Scholar 

  21. M. Lindner, Fredholm theory and stable approximation of band operators and their generalisations, Habilitation thesis, Technische Universität Chemnitz, 2009. Available at https://nbn-resolving.org/urn:nbn:de:bsz:ch1-200901182

    Google Scholar 

  22. M. Lindner, The finite section method and stable subsequences. Appl. Numer. Math. 60, 501–512 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Lindner, M. Seidel, An affirmative answer to a core issue on limit operators. J. Funct. Anal. 267, 901–917 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Lindner, H. Söding, Finite sections of the Fibonacci Hamiltonian, in The Diversity and Beauty of Applied Operator Theory, ed. by A. Böttcher, D. Potts, P. Stollmann, D. Wenzel. Oper. Theory Adv. Appl., vol. 268 (Birkhäuser, 2018), pp. 381–396

    Google Scholar 

  25. C. Puelz, M. Embree, J. Fillman, Spectral approximation for quasiperiodic Jacobi operators. Integral Equations Oper. Theory 82, 533–554 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. V.S. Rabinovich, S. Roch, B. Silbermann, Fredholm theory and finite section method for band-dominated operators. Integral Equations Oper. Theory 30, 452–495 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. V.S. Rabinovich, S. Roch, B. Silbermann, Limit Operators and their Applications in Operator Theory (Birkhäuser, 2004)

    Google Scholar 

  28. V.S. Rabinovich, S. Roch, B. Silbermann, On finite sections of band-dominated operators, in Operator Algebras, Operator Theory and Applications, ed. by M.A. Bastos, A.B. Lebre, F.-O. Speck, I. Gohberg. Oper. Theory Adv. Appl., vol. 181 (Birkhäuser, 2008), pp. 303–344

    Google Scholar 

  29. M. Reed, B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic Press, 1978)

    Google Scholar 

  30. SageMath, The Sage Mathematics Software System (Version 9.1) (Zenodo, 2020). Available at https://doi.org/10.5281/zenodo.4066866

  31. K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space (Springer, 2012)

    Google Scholar 

  32. B. Simon, Sturm Oscillation and Comparison Theorems (Birkhäuser, 2005)

    Google Scholar 

  33. B. Simon, Szegő’s Theorem and its Descendants (Princeton University Press, 2011)

    Google Scholar 

  34. A. Sütő, Schrödinger difference equation with deterministic ergodic potentials, in Beyond Quasicrystals, ed. by F. Axel, D. Gratias. Centre de Physique des Houches, vol. 3 (Springer, 1995), pp. 481–549

    Google Scholar 

  35. G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices (American Mathematical Society, 2000)

    Google Scholar 

  36. L. Weber, One-dimensional quasicrystals, finite sections and invertibility (Eindimensionale Quasikristalle, endliche Abschnitte und Invertierbarkeit), Bachelor thesis, Technische Universität Hamburg, 2018

    Google Scholar 

  37. W. Yessen, Spectral analysis of tridiagonal Fibonacci Hamiltonians. J. Spectr. Theory 3, 101–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his or her interest and helpful comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Großmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gabel, F., Gallaun, D., Großmann, J., Lindner, M., Ukena, R. (2023). Finite Sections of Periodic Schrödinger Operators. In: Choi, Y., Daws, M., Blower, G. (eds) Operators, Semigroups, Algebras and Function Theory. IWOTA 2021. Operator Theory: Advances and Applications, vol 292. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-38020-4_6

Download citation

Publish with us

Policies and ethics

Navigation