Singular Trajectories of Forced Vibrations

  • Chapter
  • First Online:
Oscillators and Oscillatory Signals from Smooth to Discontinuous
  • 123 Accesses

Abstract

As shown earlier by Zhuravlev, harmonically loaded linear conservative systems possess an alternative physically reasonable basis, which is generally different from that associated with the conventional concept of principal coordinates. Briefly, such a basis determines directions of harmonic loads along which the system response is equivalent to a single oscillator. The corresponding definition (singular directions of forced vibrations) is losing sense in nonlinear case, when the linear tool of eigenvectors becomes inapplicable. However, it will be shown in this chapter that nonlinear formulation is still possible in terms of eigenvector-functions of time given by NSTT boundary value problems. Physical meaning of the corresponding nonlinear definitions for both discrete and continual models is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.N. Abramson. The dynamic behavior of liquids in moving contains. NASA SP-106, 1966.

    Google Scholar 

  2. V. Acary and B. Brogliato. Numerical methods for nonsmooth dynamical systems: Applications in Mechanics and Electronics. Springer, Berlin, Heidelberg, 2008.

    Book  MATH  Google Scholar 

  3. U. Andreaus, P. Casini, and F. Vestroni. Non-linear dynamics of a cracked cantilever beam under harmonic excitation. International Journal of Non-Linear Mechanics, 42(3):566–575, 2007.

    Article  ADS  Google Scholar 

  4. G.E. Andrews, R. Askey, and R. Roy. Special Functions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1999.

    Book  MATH  Google Scholar 

  5. I.V. Andrianov. Asymptotics of nonlinear dynamical systems with a high degree of nonlinearity. Doklady Mathematics, 66(2):270–273, 2002.

    MathSciNet  Google Scholar 

  6. I.V. Andrianov. The pursuit of simplicity: The scientific heritage of professor Leonid I. Manevitch. International Journal of Non-Linear Mechanics, page 103998, 2022.

    Google Scholar 

  7. I.V. Andrianov. Why would a biologist need a logarithm? For the Learning of Mathematics. Communications, 42(1):11–12, 2022.

    Google Scholar 

  8. I.V. Andrianov and J. Awrejcewicz. Methods of small and large \(\delta \) in the nonlinear dynamics—a comparative analysis. Nonlinear Dynam., 23(1):57–66, 2000.

    Google Scholar 

  9. I.V. Andrianov, J. Awrejcewicz, and R.G. Barantsev. Asymptotic approaches in mechanics: New parameters and procedures. Applied Mechanics Reviews, 56(1):87–110, 2003.

    Article  ADS  Google Scholar 

  10. I.V. Andrianov, J. Awrejcewicz, and V.V. Danishevskyy. Linear and Nonlinear Waves in Microstructured Solids: Homogenization and Asymptotic Approaches. CRC Press, Boca Raton, 2021.

    Book  MATH  Google Scholar 

  11. I.V. Andrianov, J. Awrejcewicz, and G.A. Starushenko. Approximate Models of Mechanics of Composites: An Asymptotic Approach. CRC Press, Boca Raton, 2024.

    MATH  Google Scholar 

  12. I.V. Andrianov, V.I. Bolshakov, V.V. Danishevs’kyy, and D. Weichert. Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2093):1181–1201, 2008.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. I.V. Andrianov, V.V. Danishevs’kyy, H. Topol, and D. Weichert. Homogenization of a 1d nonlinear dynamical problem for periodic composites. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 91(6):523–534, 2011.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. I.V. Andrianov and L.I. Manevitch. Asymptotology: Ideas, Methods, and Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.

    Book  Google Scholar 

  15. F. Antonuccio. Hyperbolic numbers and the Dirac spinor. http://arxiv.org/abs/hep-th/9812036v1, 1998.

  16. V.I. Arnol’d. Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, 1978.

    Book  Google Scholar 

  17. U.M. Ascher, R.M.M. Mattheij, and R.D. Russell. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, volume 13 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. Corrected reprint of the 1988 original.

    Google Scholar 

  18. C.P. Atkinson. On the superposition method for determining frequencies of nonlinear systems. ASME Proceedings of the 4-th National Congress of Applied Mechanics, pages 57–62, 1962.

    Google Scholar 

  19. D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Gunaratne, and I. Procaccia. Exploring chaotic motion through periodic orbits. Phys. Rev. Lett., 58(23):2387–2389, 1987.

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Awrejcewicz, I.V. Andrianov, and L.I. Manevitch. Asymptotic Approaches in Nonlinear Dynamics. New Trends and Applications. Springer Series in Synergetics. Springer-Verlag, Berlin, 1998.

    Google Scholar 

  21. J. Awrejcewicz, A. K. Bajaj, and C.-H. Lamarque, editors. Nonlinearity, Bifurcation and Chaos: the Doors to the Future. Part II. World Scientific Publishing Co., Singapore, 1999.

    Google Scholar 

  22. J. Awrejcewicz and C.-H. Lamarque. Bifurcation and Chaos in Nonsmooth Mechanical Systems. World Scientific, Singapore, 2003.

    Book  MATH  Google Scholar 

  23. M.A.F. Aziz, A.F. Vakakis, and L.I. Manevitch. Exact solutions of the problem of vibroimpact oscillations of a discrete system with two degrees of freedom. Journal of Applied Mathematics and Mechanics, 63(4):527–530, 1999.

    Article  ADS  MathSciNet  Google Scholar 

  24. V.I. Babitsky. Theory of Vibroimpact Systems and Applications. Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

  25. T. B. Bahler. Mathematica for Scientists and Engineers. Addison-Wesley, New York, 1995.

    Google Scholar 

  26. G. A. Baker Jr. and P. Graves-Morris. Padé Approximants, vol. 59 of Encyclopedia of Mathematics and Its Applications, 2nd edition. Cambridge University Press, Cambridge, UK, 1987.

    Google Scholar 

  27. R. Balescu. Statistical Dynamics, Matter out of Equilibrium. Imperial College Press, Singapore, 1997.

    Book  MATH  Google Scholar 

  28. H. Bateman and A. Erdelyi. Higher Transcendental Functions. McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  29. J. G. F. Belinfante and B. Kolman. A survey of Lie groups and Lie algebras with applications and computational methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. Reprint of the 1972 original.

    Google Scholar 

  30. R. Bellman. Introduction to Matrix Analysis. McGraw-Hill Company, New York, 1960.

    MATH  Google Scholar 

  31. A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic Analysis for Periodic Structures. North-Holland Publishing Co., Amsterdam, 1978.

    MATH  Google Scholar 

  32. B. Blazejczyk-Okolewska, K. Czolczynski, T. Kapitaniak, and J. Wojewoda. Chaotic Mechanics in Systems with Impacts and Friction. World Scientific, 1999.

    Book  MATH  Google Scholar 

  33. S. Boettcher and C.M. Bender. Nonperturbative square-well approximation to a quantum theory. Journal of Mathematical Physics, 31(11):2579–2585, 1990.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. N. Bogoliubov and Y. Mitropollsky. Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York, 1961.

    Google Scholar 

  35. L. Brekhovskikh. Waves in Layered Media 2e. Elsevier, 2012.

    Google Scholar 

  36. L. Brillouin. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Dover, 2003.

    MATH  Google Scholar 

  37. B. Brogliato. Nonsmooth Mechanics: Models, Dynamics and Control. Springer-Verlag, London, Berlin, Heidelberg, 1999.

    Book  MATH  Google Scholar 

  38. B. Brogliato. Impacts in Mechanical Systems: Analysis and Modelling. Springer-Verlag, Berlin, 2000.

    Book  MATH  Google Scholar 

  39. L.A. Bunimovich. Decay of correlations in dynamical systems with chaotic behavior. Sov. Phys. JETP, 62:842–852, 1985.

    ADS  Google Scholar 

  40. T.K. Caughey and A.F. Vakakis. A method for examining steady state solutions of forced discrete systems with strong non-linearities. International Journal of Non-Linear Mechanics, 26(1):89–103, 1966.

    Article  ADS  MATH  Google Scholar 

  41. M. Chati, R. Rand, and S. Mukherjee. Modal analysis of a cracked beam. Journal of Sound and Vibration, 207:249–270, 1997.

    Article  ADS  MATH  Google Scholar 

  42. S. Chen and S.W. Shaw. Normal modes for piecewise linear vibratory systems. Nonlinear Dynamics, 10:135–163, 1996.

    Article  MathSciNet  Google Scholar 

  43. W. Chin, E. Ott, H.E. Nusse, and C. Grebogi. Grazing bifurcations in impact oscillators. Phys. Rev. E, 50:4427–4444, 1994.

    Article  ADS  MathSciNet  Google Scholar 

  44. L. Collatz. Eigenwertaufgaben mit technischen Anwendungen. Geest & Portig, Lepizig, 1963.

    Google Scholar 

  45. K. Cooper and R. E. Mickens. Generalized harmonic balance/numerical method for determining analytical approximations to the periodic solutions of the \(x^{4/3}\) potential. Journal of Sound and Vibration, 250:951–954, 2002.

    Google Scholar 

  46. V. T. Coppola and R. H. Rand. Computer algebra implementation of Lie transforms for hamiltonian systems: Application to the nonlinear stability of l4. ZAMM, 69(9):275–284, 1989.

    Article  ADS  MATH  Google Scholar 

  47. R.V. Craster, J. Kaplunov, and A.V. Pichugin. High-frequency homogenization for periodic media. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466(2120):2341–2362, 2010.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. L. Cveticanin. Oscillator with strong quadratic dam** force. Publications de L’institut Mathematique (Nouvelle serie), 85(99):119–130, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Dankowicz and M. R. Paul. Discontinuity-induced bifurcations in systems with hysteretic force interactions. Journal of Computational and Nonlinear Dynamics, 4(Article 041009):1–6, 2009.

    Google Scholar 

  50. A. Deprit. Canonical transformations depending on a parameter. Celestial mechanics, 1(1):12–30, 1969.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. P.A. Deymier. Acoustic Metamaterials and Phononic Crystals. Springer, Berlin-Heidelberg, 2013.

    Book  Google Scholar 

  52. M.F. Dimentberg. Statistical Dynamics of Nonlinear and Time-Varying Systems. John Wiley & Sons, New York, 1988.

    MATH  Google Scholar 

  53. M.F. Dimentberg and A.S. Bratus. Bounded parametric control of random vibrations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 456(2002):2351–2363, 2000.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. M.F. Dimentberg, D.V. Iourtchenko, and A.S. Bratus’. Transition from planar to whirling oscillations in a certain nonlinear system. Nonlinear Dynamics, 23:165–174, 2000.

    Google Scholar 

  55. H. Ding and L.Q. Chen. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100:3061–3107, 2020.

    Article  Google Scholar 

  56. W.M. Ewing, W.S. Jardetzky, and F. Press. Elastic Waves in Layered Media. Lamont Geological Observatory contribution. McGraw-Hill, 1957.

    Book  MATH  Google Scholar 

  57. O. M. Faltinsen, O. F. Rognebakke, and A. N. Timokha. Transient and steady-state amplitudes of resonant three-dimensional sloshing in a square base tank with a finite fluid depth. Physics of Fluids, 18(1):012103, 2006.

    Google Scholar 

  58. M. Feckan and M. Pospisil. On equations with generalized periodic right-hand side. Ukrainian Mathematical Journal, 70(2):255–279, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  59. B. Feeny and F.C. Moon. Chaos in a forced dry-friction oscillator: Experiments and numerical modelling. Journal of Sound and Vibration, 170(3):303–323, 1994.

    Article  ADS  MATH  Google Scholar 

  60. B.A. Feeny, A. Guran, N. Hinrichs, and K. Popp. A historical review on dry friction and stick-slip phenomena. ASME Applied Mechanics Reviews, 51:321–341, 1998.

    Article  ADS  Google Scholar 

  61. L. Ferrari and C.D.E. Boschi. Nonautonomous and nonlinear effects in generalized classical oscillators: A boundedness theorem. Physical Review E, 62(3):R3039–R3042, 2000.

    Article  ADS  MathSciNet  Google Scholar 

  62. A. Fidlin. Nonlinear Oscillations in Mechanical Engineering. Springer, Berlin, Heidelberg, 2005.

    Google Scholar 

  63. A.F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers Group, Dordrecht, 1988. Translated from the Russian.

    Book  Google Scholar 

  64. J. Fish and W. Chen. Space-time multiscale model for wave propagation in heterogeneous media. Computer Methods in Applied Mechanics and Engineering, 193(45):4837–4856, 2004.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. S. Fucik and A. Kufner. Nonlinear differential equations. Elsevier, Amsterdam, Oxford, New York, 1980. Studies in Applied Mechanics 2, Elsevier Scientific Publishing Company.

    Google Scholar 

  66. O. Gendelman, L.I. Manevitch, A.F. Vakakis, and R. M’Closkey. Energy pum** in nonlinear mechanical oscillators. I. Dynamics of the underlying Hamiltonian systems. Trans. ASME J. Appl. Mech., 68(1):34–41, 2001.

    Google Scholar 

  67. O.V. Gendelman. Modeling of inelastic impacts with the help of smooth functions. Chaos, Solitons and Fractals, 28:522–526, 2006.

    Article  ADS  MATH  Google Scholar 

  68. O.V. Gendelman and L.I. Manevitch. Discrete breathers in vibroimpact chains: Analytic solutions. Physical Review E, 78(026609), 2008.

    Google Scholar 

  69. G.E.O. Giacaglia. Perturbation Methods in Non-Linear Systems. Springer-Verlag, New York, 1972. Applied Mathematical Sciences, Vol. 8.

    Google Scholar 

  70. W. Goldsmith. Impact: The Theory and Physical Behaviour of Colliding. Courier Dover Publications, North Chelmsford, 2001.

    MATH  Google Scholar 

  71. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products (Fifth Edition). Academic Press, Boston, 1994.

    MATH  Google Scholar 

  72. C. Grebogi, E. Ott, and J.A. Yorke. Unstable periodic orbits and the dimensions of multifractal chaotic attractors controlling chaos. Physical Review A, 37(5):1711–1724, 1988.

    Article  ADS  MathSciNet  Google Scholar 

  73. D.T. Greenwood. Principles of Dynamics. Prentice Hall, 1988.

    Google Scholar 

  74. J. Guckenheimer and B. Meloon. Computing periodic orbits and their bifurcations with automatic differentiation. SIAM J. Sci. Comput., 22(3):951–985, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Guran, F. Pfeiffer, and K. Popp. Dynamics with Friction: Modeling, Analysis and Experiments. World Scientific, 2001.

    Book  MATH  Google Scholar 

  76. W. Hahn. Stability of Motion. Springer Series in Nonlinear Dynamics. Springer-Verlag, New York, 1967.

    Google Scholar 

  77. T.J. Harvey. Natural forcing functions in nonlinear systems. ASME Journal of Applied Mechanics, 25:352–356, 1958.

    Article  MATH  Google Scholar 

  78. E. Hascoët, H.J. Herrmann, and V. Loreto. Shock propagation in a granular chain. Phys. Rev. E, 59(3):3202–3206, 1999.

    Article  ADS  Google Scholar 

  79. D. D. Holm and P. Lynch. Stepwise precession of the resonant swinging spring. SIAM J. Applied Dynamical Systems, 1(1):44–64, 2002.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. J. Hong, J.-Y. Ji, and H. Kim. Power laws in nonlinear granular chain under gravity. Phys. Rev. Lett., 82(15):3058–3061, 1999.

    Article  ADS  Google Scholar 

  81. G. Hori. Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Japan, 18(4):287–296, 1966.

    ADS  Google Scholar 

  82. G.-I. Hori. Mutual perturbations of \(1\colon 1\) commensurable small bodies with the use of the canonical relative coordinates. I. In Resonances in the motion of planets, satellites and asteroids, pages 53–66. Univ. São Paulo, São Paulo, 1985.

    Google Scholar 

  83. H. Hu and Z.-G. **ong. Oscillations in an \(x^{(2m+2)/(2n+1)}\) potential. Journal of Sound and Vibration, 259:977–980, 2003.

    Google Scholar 

  84. K. H. Hunt and F. R. E. Crossley. Coefficient of restitution interpreted as dam** in vibroimpact. ASME Journal of Applied Mechanics, 97:440–445, 1975.

    Article  Google Scholar 

  85. M.I. Hussein, M.J. Leamy, and M. Ruzzene. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Applied Mechanics Review, 66:040802, 2014.

    Article  ADS  Google Scholar 

  86. C. M. Hutchins. A history of violin research. J. Acoust. Soc. Am., 73(5):1421–1440, 1983.

    Article  ADS  Google Scholar 

  87. R.A. Ibrahim. Liquid Sloshing Dynamics. Cambridge University Press, New York, 2005.

    Book  MATH  Google Scholar 

  88. R.A. Ibrahim. Vibro-Impact Dynamics: Modeling, Map** and Applications, LNACM 43. Springer-Verlag, Berlin, Heidelberg, 2009.

    Book  Google Scholar 

  89. R.A. Ibrahim, V. I. Babitsky, and M. Okuma, editors. Vibro-Impact Dynamics of Ocean Systems and Related Problems. Springer-Verlag, Berlin Heidelberg, 2009.

    Google Scholar 

  90. R.A. Ibrahim, V.N. Pilipchuk, and T. Ikeda. Recent advances in liquid sloshing dynamics. Applied Mechanics Reviews, 54(2):133–199, 2001.

    Article  ADS  Google Scholar 

  91. T. Ikeda. Nonlinear parametric vibrations of an elastic structure with a rectangular liquid tank. Nonlinear Dynamics, 33:43–70, 2003.

    Article  MATH  Google Scholar 

  92. T. Ikeda, Y. Harata, and R. Ibrahim. Nonlinear liquid sloshing in square tanks subjected to horizontal random excitation. Nonlinear Dynamics, pages 1–15, 2013.

    Google Scholar 

  93. T. Ikeda, R. A. Ibrahim, Y. Harata, and T. Kuriyama. Nonlinear liquid sloshing in a square tank subjected to obliquely horizontal excitation. Journal of Fluid Mechanics, 700:304–328, 2012.

    Article  ADS  MATH  Google Scholar 

  94. E. L. Ince. Ordinary Differential Equations. Dover, New York, 1956.

    Google Scholar 

  95. A. Iomin, S. Fishman, and G.M. Zaslavsky. Quantum localization for a kicked rotor with accelerator mode islands. Physical Review E, 65(036215), 2002.

    Google Scholar 

  96. A. P. Ivanov. Dynamics of Systems with Mechanical Collisions. International Program of Education, Moscow, 1997. in Russian.

    Google Scholar 

  97. A.P. Ivanov. Impact oscillations: linear theory of stability and bifurcations. Journal of Sound and Vibration, 178(3):361–378, 1994.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. L.B. Jackson. Signals, Systems, and Transforms. Addison-Wesley Publishing Company, New York, 1991.

    Google Scholar 

  99. D. Jiang, C. Pierre, and S.W. Shaw. Large-amplitude non-linear normal modes of piecewise linear systems. Journal of Sound and Vibration, 272:869–891, 2004.

    Article  ADS  MathSciNet  Google Scholar 

  100. A. L. Kalamkarov, I. V. Andrianov, and V. V. Danishevskyy. Asymptotic homogenization of composite materials and structures. Applied Mechanics Reviews, 62(030802):1–20, 2009.

    Google Scholar 

  101. G. V. Kamenkov. Izbrannye trudy v dvukh tomakh. Tom. I. Nauka, Moscow, 1971. Ustoichivost dvizheniya. Kolebaniya. Aerodinamika. [Stability of motion. Oscillations. Aerodynamics], With a biography of G. V. Kamenkov, a survey article on his works by V. G. Veretennikov, A. S. Galiullin, S. A. Gorbatenko and A. L. Kunicyn, and a bibliography, Edited by N. N. Krasovskiı̆.

    Google Scholar 

  102. I.L. Kantor, A.S. Solodovnikov, and A. Shenitzer. Hypercomplex Numbers: an Elementary Introduction to Algebras. Springer, 1989.

    Book  Google Scholar 

  103. H. Kauderer. Nichtlineare Mechanik. Springer-Verlag, Berlin, 1958.

    Book  MATH  Google Scholar 

  104. J. Kevorkian and J. D. Cole. Multiple scale and singular perturbation methods. Springer-Verlag, New York, 1996.

    Book  MATH  Google Scholar 

  105. W.M. Kinney and R.M. Rosenberg. On steady state harmonic vibrations of non-linear systems with many degrees of freedom. ASME Journal of Applied Mechanics, 33:406–412, 1966.

    Article  MATH  Google Scholar 

  106. V.V. Kisil. Induced representations and hypercomplex numbers. Advances in Applied Clifford Algebras, 23(2):417–440, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  107. V. Kislovsky, M. Kovaleva, K.R. Jayaprakash, and Y. Starosvetsky. Consecutive transitions from localized to delocalized transport states in the anharmonic chain of three coupled oscillators. Chaos, 26:073102, 2016.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. V. Kislovsky, M. Kovaleva, and Yu. Starosvetsky. Regimes of local energy pulsations in non-linear klein-gordon trimer: Higher dimensional analogs of limiting phase trajectories, 2016.

    Google Scholar 

  109. D.M. Klimov and V.Ph. Zhuravlev. Group-Theoretic Methods in Mechanics and Applied Mathematics. CRC Press, 2004.

    MATH  Google Scholar 

  110. A.E. Kobrinskii. Dynamics of Mechanisms with Elastic Connections and Impact Systems. Iliffe Books, London, 1969.

    Google Scholar 

  111. C. Koch. Biophysics of Computation. Information Processing in Single Neurons. Oxford University Press, Oxford, 1999.

    Google Scholar 

  112. A.M. Kosevich and A.S. Kovalev. Introduction to Nonlinear Physical Mechanics (in Russian). Naukova Dumka, Kiev, 1989.

    MATH  Google Scholar 

  113. I. Kovacic. On the use of Jacobi elliptic functions for modelling the response of antisymmetric oscillators with a constant restoring force. Communications in Nonlinear Science and Numerical Simulation, 93:105504, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  114. M. Kovaleva, V. Pilipchuk, and L. Manevitch. Nonconventional synchronization and energy localization in weakly coupled autogenerators. Phys. Rev. E, 94:032223, 2016.

    Article  ADS  Google Scholar 

  115. M.A. Kovaleva, L.I. Manevitch, and V.N. Pilipchuk. Non-linear beatings as non-stationary synchronization of weakly coupled autogenerators, pages 53–83. In Problems of Nonlinear Mechanics and Physics of Materials. Springer, 2019.

    Google Scholar 

  116. P. Kowalczyk, M. Bernardo, A. R. Champneys, S. J. Hogan, M. Homer, P. T. Piiroinen, Yu. A. Kuznetsov, and A. Nordmark. Two-parameter discontinuity-induced bifurcations of limit cycles: Classification and open problems. International Journal of Bifurcation and Chaos, 16(3):601–629, 2006.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. N. Kryloff and N. Bogoliuboff. Introduction to Non-Linear Mechanics. Princeton University Press, Princeton, N. J., 1943.

    MATH  Google Scholar 

  118. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani. Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B, 49:2313–2322, Jan 1994.

    Article  ADS  Google Scholar 

  119. N.J. Kutz. Mode-locked soliton lasers. SIAM Review, 48(4):629–678, 2006.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. L. D. Landau and E. M. Lifschitz. Mechanics: Course of the Theoretical Physics, Volume 1. 3rd ed. Elsevier, Amsterdam, 1976.

    Google Scholar 

  121. M.A. Lavrent’ev and B. V. Shabat. Problemy Gidrodinamiki i ikh Matematicheskie Modeli. Nauka, Moscow (in Russian), 1977.

    Google Scholar 

  122. Y. S. Lee, F. Nucera, A. F. Vakakis, D.M. McFarland, and L. A. Bergman. Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Physica D, 238(18):1868–1896, 2009.

    Article  ADS  MATH  Google Scholar 

  123. Y.S. Lee, G. Kerschen, A.F. Vakakis, P. Panagopoulos, L. Bergman, and D.M. McFarland. Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Physica D, 204:41–69, 2005.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. R. I. Leine, Henk Nijmeijer, and Hendrik Nijmeijer. Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, 2006.

    Google Scholar 

  125. F. L. Lewis, D. M. Dawson, and C. T. Abdallah. Robot Manipulator Control: Theory and Practice. CRC Press, 2004.

    Google Scholar 

  126. A.M. Liapunov. An investigation of one of the singular cases of the theory of stability of motion, II. Mathematicheskiy Sbornik, 17(2):253–333, 1893. [English translation in: A. M. Liapunov. Stability of Motion. Academic Press, 1966, pages 128–184].

    Google Scholar 

  127. A. J. Lichtenberg and M. A. Lieberman. Regular and Stochastic Motion. Springer, New York, 1983.

    Book  MATH  Google Scholar 

  128. O. Makarenkov and J.S.W. Lamb. Dynamics and bifurcations of nonsmooth systems: A survey. Physica D: Nonlinear Phenomena, 241(22):1826–1844, 2012.

    Article  ADS  MathSciNet  Google Scholar 

  129. I. G. Malkin. Some problems of the theory of nonlinear oscillations. U. S. Atomic Energy Commision, Technical Information Service, 1959.

    Google Scholar 

  130. M. Manciu, S. Sen, and A.J. Hurd. Impulse propagation in dissipative and disordered chains with power-low repulsive potentials. Physica D, 157:226–240, 2001.

    Article  ADS  MATH  Google Scholar 

  131. A.I. Manevich and L.I. Manevitch. The Mechanics of Nonlinear Systems With Internal Resonances. Imperial College Press, London, 2005.

    Book  Google Scholar 

  132. L. I. Manevitch and A.I. Musienko. Limiting phase trajectory and beating phenomena in systems of coupled nonlinear oscillators. 2nd International Conference on Nonlinear Normal Modes and Localization in Vibrating Systems, Samos, Greece, June 19–23, pages 25–26, 2006.

    Google Scholar 

  133. L.I. Manevitch. New approach to beating phenomenon in coupled nonlinear oscillatory chains. Archive Appl Mech, 77(5):301–12, 2007.

    Article  ADS  MATH  Google Scholar 

  134. L.I. Manevitch and O.V. Gendelman. Oscillatory models of vibro-impact type for essentially non-linear systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(10):2007–2043, 2008.

    Google Scholar 

  135. L.I. Manevitch, M.A. Kovaleva, and V.N. Pilipchuk. Non-conventional synchronization of weakly coupled active oscillators. Europhysics Letters, 101(5):50002, 2013.

    Google Scholar 

  136. L.I. Manevitch, Yu.V. Mikhlin, and V.N. Pilipchuk. Metod Normalnykh Kolebanii dlya Sushchestvenno Nelineinykh Sistem. Nauka, Moscow (in Russian), 1989.

    Google Scholar 

  137. J. E. Marsden. Basic Complex Analysis. Freeman, San Francisco, 1973.

    MATH  Google Scholar 

  138. V. P. Maslov and G. A. Omel’janov. Asymptotic soliton-like solutions of equations with small dispersion. Russian Math. Surveys, 36(3):73–149, 1981.

    Article  ADS  MathSciNet  Google Scholar 

  139. K.H. Matlack, M. Serra-Garcia, A. Palermo, S.D. Huber, and C. Daraio. Designing perturbative metamaterials from discrete models. Nature Materials, 17:323–328, 2018.

    Article  ADS  Google Scholar 

  140. Michael McCloskey. Intuitive physics. Scientific american, 248(4):122–131, 1983.

    Article  Google Scholar 

  141. R. E. Mickens. Oscillations in an \(x^{4/3}\) potential. J. Sound Vibration, 246:375–378, 2001.

    Google Scholar 

  142. Yu. V. Mikhlin and S. N. Reshetnikova. Dynamical interaction of an elastic system and a vibro-impact absorber. Mathematical Problems in Engineering, 2006(Article ID 37980):15 pages, 2006.

    Google Scholar 

  143. Yu. V. Mikhlin and A. M. Volok. Solitary transversal waves and vibro-impact motions in infinite chains and rods. International Journal of Solids and Structures, 37:3403–3420, 2000.

    Article  MATH  Google Scholar 

  144. Yu. V. Mikhlin and A. L. Zhupiev. An application of the Ince algebraization to the stability of the non-linear normal vibration modes. Internat. J. Non-Linear Mech., 32(2):393–409, 1997.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. N. Minorsky. Introduction to Non-Linear Mechanics. J.W. Edwards, Ann Arbor, 1947.

    MATH  Google Scholar 

  146. Yu.A. Mitropol’sky and P.M. Senik. Construction of asymptotic solution of an autonomouse system with strong nonlinearity. Doklady AN Ukr.SSR (Ukrainian Academy of Sciences Reports), 6:839–844, 1961. (in Russian).

    Google Scholar 

  147. F.C. Moon. Chaotic Vibrations. John Willey & Sons, New York, 1987.

    MATH  Google Scholar 

  148. J. Moser. Recent developments in the theory of Hamiltonian systems. SIAM Rev., 28(4):459–485, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  149. J.K. Moser. Lectures on Hamiltonian systems. In Mem. Amer. Math. Soc. No. 81, pages 1–60. Amer. Math. Soc., Providence, R.I., 1968.

    Google Scholar 

  150. R.F. Nagaev and V.N. Pilipchuk. Nonlinear dynamics of a conservative system that degenerates to a system with a singular set. Journal of Applied Mathematics and Mechanics, 53(2):145–149, 1989.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  151. A.H. Nayfeh. Perturbation Methods. John Wiley & Sons, New York-London-Sydney, 1973.

    MATH  Google Scholar 

  152. A.H. Nayfeh. Perturbation methods in nonlinear dynamics. In Nonlinear Dynamics Aspects of Particle Accelerators (Santa Margherita di Pula, 1985), pages 238–314. Springer, Berlin, 1986.

    Google Scholar 

  153. A.H. Nayfeh. Method of Normal Forms. John Wiley & Sons Inc., New York, 1993.

    MATH  Google Scholar 

  154. A.H. Nayfeh. Wave Propagation in Layered Anisotropic Media: with Application to Composites. North-Holland Series in Applied Mathematics and Mechanics. Elsevier Science, 1995.

    MATH  Google Scholar 

  155. A.H. Nayfeh. Nonlinear Interactions: Analytical Computational, and Experimental Methods. John Wiley & Sons Inc., New York, 2000.

    MATH  Google Scholar 

  156. A.H. Nayfeh and B. Balachandran. Applied Nonlinear Dynamics Analytical, Computational, and Experimental Methods. John Wiley & Sons Inc., New York, 1995.

    Book  MATH  Google Scholar 

  157. V.F. Nesterenko. Dynamics of Heterogeneous Materials. Springer-Verlag, New York, 2001.

    Book  Google Scholar 

  158. S.V. Nesterov. Examples of nonlinear Klein-Gordon equations, solvable in terms of elementary functions. Proceedings of Moscow Institute of Power Engineering, 357:68–70, 1978. (in Russian).

    Google Scholar 

  159. A. Norris. Waves in periodically layered media: A comparison of two theories. SIAM Journal on Applied Mathematics, 53(5):1195–1209, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  160. E. Ott, C. Grebogi, and J.A. Yorke. Controlling chaos. Phys. Rev. Lett., 64(11):1196–1199, 1990.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  161. A.M. Ozorio de Almeida. Hamiltonian Systems: Chaos and Quantization. Cambridge University Press, Cambridge, 1988.

    MATH  Google Scholar 

  162. T.S. Parker and L.O. Chua. Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

  163. F.D. Peat. Synchronicity: the Bridge Between Matter and Mind. Bantam Books, New York, 1988.

    Google Scholar 

  164. I.C. Percival and D. Richards. Introduction to Dynamics. Cambridge University Press, 1982.

    MATH  Google Scholar 

  165. F. Peterka. Introduction to Oscillations of Mechanical Systems with Internal Impacts (in Czech). Academia, Prague, 1981.

    Google Scholar 

  166. F. Pfeiffer. Mechanical System Dynamics. Springer, Berlin, Heidelberg, 2008.

    Book  MATH  Google Scholar 

  167. F. Pfeiffer and C. Glocker. Multibody Dynamics with Unilateral Contacts. Wiley, New York, 1996.

    Book  MATH  Google Scholar 

  168. F. Pfeiffer and A. Kunert. Rattling models from deterministic to stochastic processes. Nonlinear Dynamics, 1(1):63–74, 1990.

    Article  Google Scholar 

  169. V. Pilipchuk. Stochastic energy absorbers based on analogies with soft-wall billiards. Nonlinear Dynamics, 98(4):2671–2685, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  170. V. Pilipchuk. Analytical criterion of a multimodal snap-through flutter of thin-walled panels with initial imperfections. Nonlinear Dynamics, 102(3):1181–1195, 2020.

    Article  MathSciNet  Google Scholar 

  171. V. Pilipchuk. Design of energy absorbing metamaterials using stochastic soft-wall billiards. Symmetry, 13:1798, 2021.

    Article  ADS  Google Scholar 

  172. V.N. Pilipchuk. The calculation of strongly nonlinear systems close to vibroimpact systems. Journal of Applied Mathematics and Mechanics, 49(5):572–578, 1985.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  173. V.N. Pilipchuk. Transformation of the vibratory systems by means of a pair of nonsmooth periodic functions. Dopovidi Akademii Nauk Ukrainskoi RSR. Seriya A - Fiziko-Matematichni Ta Technichni Nauki, 4:36–38, 1988. (in Ukrainian).

    Google Scholar 

  174. V.N. Pilipchuk. On the computation of periodic processes in mechanical systems with the impulsive excitation. In XXXI Sympozjon “Modelowanie w Mechanice”, Zeszyty Naukowe Politechniki Slaskiej, Z.107, Gliwice (Poland). Politechnica Slaska, 1992.

    Google Scholar 

  175. V.N. Pilipchuk. On special trajectories in configuration space of non - linear vibrating systems. Mekhanika Tverdogo Tela (Mechanics of Solids), 3:36–47, 1995.

    Google Scholar 

  176. V.N. Pilipchuk. Analytical study of vibrating systems with strong non-linearities by employing saw-tooth time transformations. Journal of Sound and Vibration, 192(1):43–64, 1996.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  177. V.N. Pilipchuk. Calculation of mechanical systems with pulsed excitation. Journal of Applied Mathematics and Mechanics, 60(2):217–226, 1996.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  178. V.N. Pilipchuk. Application of special nonsmooth temporal transformations to linear and nonlinear systems under discontinuous and impulsive excitation. Nonlinear Dynam., 18(3):203–234, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  179. V.N. Pilipchuk. Auto-localized modes in array of nonlinear coupled oscillators. In: Problemy nelineinoi mekhaniki i fiziki materialov, Dnepropetrovsk, Editor A.I. Manevich (ISBN: 966-7476-10-3), pages 229–235, 1999.

    Google Scholar 

  180. V.N. Pilipchuk. Non-smooth spatio-temporal transformation for impulsively forced oscillators with rigid barriers. J. Sound Vibration, 237(5):915–919, 2000.

    Article  ADS  Google Scholar 

  181. V.N. Pilipchuk. Principal trajectories of the forced vibration for discrete and continuous systems. Meccanica, 35(6):497–517, 2000.

    Article  MATH  Google Scholar 

  182. V.N. Pilipchuk. Impact modes in discrete vibrating systems with bilateral barriers. International Journal of Nonlinear Mechanics, 36(6):999–1012, 2001.

    Article  ADS  MATH  Google Scholar 

  183. V.N. Pilipchuk. Non-smooth time decomposition for nonlinear models driven by random pulses. Chaos, Solitons and Fractals, 14(1):129–143, 2002.

    Article  ADS  MATH  Google Scholar 

  184. V.N. Pilipchuk. Some remarks on nonsmooth transformations of space and time for oscillatory systems with rigid barriers. Journal of Applied Mathematics and Mechanics, 66(1):31–37, 2002.

    Article  ADS  MathSciNet  Google Scholar 

  185. V.N. Pilipchuk. Temporal transformations and visualization diagrams for nonsmooth periodic motions. International Journal of Bifurcation and Chaos, 15(6):1879–1899, 2005.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  186. V.N. Pilipchuk. A periodic version of Lie series for normal mode dynamics. Nonlinear Dynamics and System Theory, 6(2):187–190, 2006.

    MathSciNet  MATH  Google Scholar 

  187. V.N. Pilipchuk. Transient mode localization in coupled strongly nonlinear exactly solvable oscillators. Nonlinear Dynamics, 51(1-2):245–258, 2008.

    Article  MATH  Google Scholar 

  188. V.N. Pilipchuk. Transitions from strongly to weakly-nonlinear dynamics in a class of exactly solvable oscillators and nonlinear beat phenomena. Nonlinear Dynamics, 52(4):263–276, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  189. V.N. Pilipchuk. Transition from normal to local modes in an elastic beam supported by nonlinear springs. Journal of Sound and Vibration, 322:554–563, 2009.

    Article  ADS  Google Scholar 

  190. V.N. Pilipchuk. Nonlinear interactions and energy exchange between liquid sloshing modes. Physica D: Nonlinear Phenomena, 263(0):21–40, 2013.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  191. V.N. Pilipchuk. Closed-form solutions for oscillators with inelastic impacts. Journal of Sound and Vibration, 359:154–167, 2015.

    Article  ADS  Google Scholar 

  192. V.N. Pilipchuk. Effective hamiltonians for resonance interaction dynamics and interdisciplinary analogies. Procedia IUTAM, 19:27–34, 2016. IUTAM Symposium Analytical Methods in Nonlinear Dynamics.

    Google Scholar 

  193. V.N. Pilipchuk. Friction induced pattern formations and modal transitions in a mass-spring chain model of sliding interface. Mechanical Systems and Signal Processing, 147:107119, 2021.

    Article  Google Scholar 

  194. V.N. Pilipchuk, I.V. Andrianov, and B. Markert. Analysis of micro-structural effects on phononic waves in layered elastic media with periodic nonsmooth coordinates. Wave Motion, 63:149–169, 2016.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  195. V.N. Pilipchuk and R.A. Ibrahim. The dynamics of a non-linear system simulating liquid sloshing impact in moving structures. Journal of Sound and Vibration, 205(5):593–615, 1997.

    Article  ADS  Google Scholar 

  196. V.N. Pilipchuk and R.A. Ibrahim. Dynamics of a two-pendulum model with impact interaction and an elastic support. Nonlinear Dynam., 21(3):221–247, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  197. V.N. Pilipchuk and G.A. Starushenko. On the representation of periodic solutions of differential equations by means of an oblique-angled saw-tooth transformation of the argument. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 11:25–28, 1997. (in Russian).

    MathSciNet  MATH  Google Scholar 

  198. V.N. Pilipchuk and G.A. Starushenko. A version of non-smooth transformations for one-dimensional elastic systems with a periodic structure. Journal of Applied Mathematics and Mechanics, 61(2):265–274, 1997.

    Article  ADS  MathSciNet  Google Scholar 

  199. V.N. Pilipchuk and A.F. Vakakis. Nonlinear normal modes and wave transmission in a class of periodic continuous systems. In Dynamics and Control of Distributed Systems, pages 95–120. Cambridge Univ. Press, Cambridge, 1998.

    Google Scholar 

  200. V.N. Pilipchuk and A.F. Vakakis. Study of the oscillations of a nonlinearly supported string using nonsmooth transformations. Journal of Vibration and Acoustics, 120(2):434–440, 1998.

    Article  Google Scholar 

  201. V.N. Pilipchuk, A.F. Vakakis, and M.A.F. Azeez. Study of a class of subharmonic motions using a nonsmooth temporal transformations (NSTT). Physica D, 100:145–164, 1997.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  202. H. Poincaré. Science and Hypothesis. Dover books on science. Dover Publications, 1952.

    MATH  Google Scholar 

  203. H. Poincaré. Les méthodes nouvelles de la mécanique céleste. Tome I. Librairie Scientifique et Technique Albert Blanchard, Paris, 1987. Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. [Periodic solutions. Nonexistence of uniform integrals. Asymptotic solutions], Reprint of the 1892 original, With a foreword by J. Kovalevsky, Bibliothèque Scientifique Albert Blanchard. [Albert Blanchard Scientific Library].

    Google Scholar 

  204. H. Poincaré. Science and method. Thoemmes Press, Bristol, 1996. Translated by Francis Maitland, With a preface by Bertrand Russell, Reprint of the 1914 edition.

    Google Scholar 

  205. K. Popp. Non-smooth mechanical systems. Journal of Applied Mathematics and Mechanics, 64(5):765–772, 2000.

    Article  ADS  MATH  Google Scholar 

  206. M.I. Qaisi. Non-linear normal modes of a lumped parameter system. Journal of Sound and Vibration, 205:205–211, 1997.

    Article  ADS  Google Scholar 

  207. J. I. Ramos. Piecewise-linearized methods for oscillators with fractional-power nonlinearities. Journal of Sound and Vibration, 300:502–521, 2007.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  208. R.D. Richtmyer. Principles of Advanced Mathematical Physics. Vol. II. Springer-Verlag, New York, 1981. Texts and Monographs in Physics.

    Google Scholar 

  209. R.M. Rosenberg. The \({A}teb(h)\)-functions and their properties. Quart. Appl. Math., 21:37–47, 1963.

    Google Scholar 

  210. R.M. Rosenberg. Steady-state forced vibrations. Internat. J. Non-Linear Mech., 1:95–108, 1966.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  211. P.F. Rowat and A.I. Selverston. Oscillatory mechanisms in pairs of neurons connected with fast inhibitory synapses. Journal of Computational Neuroscience, 4:103–127, 1997.

    Article  MATH  Google Scholar 

  212. G. Salenger, A.F. Vakakis, O. Gendelman, L. Manevitch, and I. Andrianov. Transitions from strongly to weakly nonlinear motions of damped nonlinear oscillators. Nonlinear Dynam., 20(2):99–114, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  213. G. D. Salenger and A. F. Vakakis. Discreteness effects in the forced dynamics of a string on a periodic array of non-linear supports. International Journal of Non-Linear Mechanics, 33(4):659–673, 1998.

    Article  ADS  MATH  Google Scholar 

  214. A.M. Samoı̆lenko, A.A. Boı̆chuk, and V.F. Zhuravlev. Weakly nonlinear boundary value problems for operator equations with impulse action. Ukraïn. Mat. Zh., 49(2):272–288, 1997.

    Google Scholar 

  215. E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory. Springer, 2014.

    MATH  Google Scholar 

  216. F. Santosa and W.W. Symes. A dispersive effective medium for wave propagation in periodic composites. SIAM Journal on Applied Mathematics, 51(4):984–1005, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  217. T.P. Sapsis and A.F. Vakakis. Subharmonic orbits of a strongly nonlinear oscillator forced by closely spaced harmonics. Journal of Computational and Nonlinear Dynamics, 6:011014, 2011.

    Article  Google Scholar 

  218. P. Scherz. Practical Electronics for Inventors. McGraw-Hill, 2006.

    Google Scholar 

  219. O.H. Schmitt. A thermionic trigger. Journal of Scientific Instruments, 15(1):24, 1938.

    Google Scholar 

  220. G. Sheng, R. Dukkipati, and J. Pang. Nonlinear dynamics of sub-10 nm flying height air bearing slider in modern hard disk recording system. Mechanism and Machine Theory, 41:1230–1242, 2006.

    Article  MATH  Google Scholar 

  221. Y.G. Sinai. Dynamical systems with elastic reflections: ergodic properties of dispersing billiards. Russian Math. Surveys, 25:137–189, 1970.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  222. V.V. Smirnov, D.S. Shepelev, and L.I. Manevitch. Energy exchange and transition to localization in the asymmetric Fermi-Pasta-Ulam oscillatory chain. European Physical Journal B, 86(10):1–9, 1993.

    MATH  Google Scholar 

  223. G. Sobczyk. The hyperbolic number plane. The College Mathematics Journal, 26(4):268–280, 1995.

    Article  Google Scholar 

  224. D. S. Sophianopoulos, A. N. Kounadis, and A. F. Vakakis. Complex dynamics of perfect discrete systems under partial follower forces. Internat. J. Non-Linear Mech., 37(6):1121–1138, 2002.

    Article  ADS  MATH  Google Scholar 

  225. I. Stakgold. Green’s Functions and Boundary Value Problems. Wiley-Interscience, New York, 1979.

    MATH  Google Scholar 

  226. Yu. Starosvetsky, K.R. Jayaprakash, and A.F. Vakakis. Scattering of solitary waves and excitation of transient breathers in granular media by light intruders and no precompression. Journal of Applied Mechanics, 79(1), 11 2011. 011001.

    Google Scholar 

  227. G. Starushenko, N. Krulik, and S. Tokarzewski. Employment of non-symmetrical saw-tooth argument transformation method in the elasticity theory for layered composites. International Journal of Heat and Mass Transfer, 45:3055–3060, 2002.

    Article  MATH  Google Scholar 

  228. W.J. Stronge. Impact Mechanics. Cambridge University Press, 2000.

    Book  MATH  Google Scholar 

  229. H. Tao and J. Gibert. Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals. Nonlinear Dynamics, 95:2963–2993, 2019.

    Article  MATH  Google Scholar 

  230. J. J. Thomsen and A. Fidlin. Near-elastic vibro-impact analysis by discontinuous transformations and averaging. Journal of Sound and Vibration, 311:386–407, 2008.

    Article  ADS  Google Scholar 

  231. J.J. Thomsen. Vibrations and Stability, 3rd Edition. Springer Nature Switzerland AG, 2021.

    Google Scholar 

  232. S. P. Timoshenko, D.H. Young, and W.Jr. Weaver. Vibration Problems in Engineering. 4th. ed. John Wiley, New York, 1974.

    Google Scholar 

  233. J. R. Tippetts. Analysis of idealised oscillatory pipe flow. 2nd International Symposium on Fluid - Control, Measurement, Mechanics - and Flow Visualisation, 5-9 September 1988, Sheffield, England, 1988.

    Google Scholar 

  234. M. Toda. Nonlinear lattice and soliton theory. IEEE Transactions on Circuits and Systems, 30(8):542–554, 1983.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  235. J.D. Turner. On the simulation of discontinuous functions. Journal of Applied Mechanics, 68:751–757, 2001.

    Article  ADS  MATH  Google Scholar 

  236. Y. Ueda. Randomly transitional phenomena in the system governed by Duffing’s equation. J. Statist. Phys., 20(2):181–196, 1979.

    Article  ADS  MathSciNet  Google Scholar 

  237. S. Ulrych. Relativistic quantum physics with hyperbolic numbers. Physics Letters B, 625:313, 2005.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  238. I. M. Uzunov, R. Muschall, M. Golles, Yu. S. Kivshar, B. A. Malomed, and F. Lederer. Pulse switching in nonlinear fiber directional couplers. Phys. Rev. E, 51:2527–2537, 1995.

    Article  ADS  Google Scholar 

  239. A. F. Vakakis and T. M. Atanackovic. Buckling of an elastic ring forced by a periodic attay of compressive loads. ASME Journal of Applied Mechanics, 66:361–367, 1999.

    Article  Google Scholar 

  240. A.F. Vakakis, O.V. Gendelman, L.A. Bergman, D.M. McFarland, G. Kerschen, and Y.S. Lee. Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer-Verlag, Berlin, Heidelberg, 2009.

    MATH  Google Scholar 

  241. A.F. Vakakis, L.I. Manevitch, Yu.V. Mikhlin, V.N. Pilipchuk, and A.A. Zevin. Normal Modes and Localization in Nonlinear Systems. John Wiley & Sons Inc., New York, 1996. A Wiley-Interscience Publication.

    Google Scholar 

  242. E.G. Vedenova, L.I. Manevich, and V.N. Pilipchuk. Normal oscillations of a string with concentrated masses on nonlinearly elastic supports. Journal of Applied Mathematics and Mechanics, 49(2):153–159, 1985.

    Article  ADS  MathSciNet  Google Scholar 

  243. F. Vestroni, A. Luongo, and A. Paolone. A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system. Nonlinear Dynamics, 54(4):379–393, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  244. S. B. Waluya and W. T. van Horssen. On the periodic solutions of a generalized non-linear Van der Pol oscillator. Journal of Sound and Vibration, 268:209–215, 2003.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  245. G.B. Whitham. Linear and Nonlinear Waves. John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original.

    Google Scholar 

  246. E.T. Whittaker and G.N. Watson. A Course of Modern Analysis. 4th Edition. Cambridge University Press, Cambridge (UK), 1986.

    Google Scholar 

  247. M. Wiercigroch and B. de Kraker, editors. Applied Nonlinear Dynamics ans Chaos of Mechanical Systems with Discontinuities. World Scientific, Singapore, 2000.

    MATH  Google Scholar 

  248. I.M. Yaglom. Complex Numbers in Geometry. Academic Press, 2014.

    MATH  Google Scholar 

  249. A. A. Zevin. Localization of periodic oscillations in vibroimpact systems. In XXXV Symposium “Modeling in Mechanics”, Gliwice (Poland), 261-266. Politechnica Slaska, 1996.

    Google Scholar 

  250. A.L. Zhupiev and Yu.V. Mikhlin. Stability and branching of normal oscillations forms of nonlinear systems. Journal of Applied Mathematics and Mechanics, 45:328–331, 1981.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  251. V.F. Zhuravlev. A method for analyzing vibration-impact systems by means of special functions. Mechanics of Solids, 11(2):23–27, 1976.

    ADS  MathSciNet  Google Scholar 

  252. V.F. Zhuravlev. Equations of motion of mechanical systems with ideal one-sided links. Journal of Applied Mathematics and Mechanics, 42(5):839–847, 1978.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  253. V.F. Zhuravlev. The method of Lie series in the motion-separation problem in nonlinear mechanics. Journal of Applied Mathematics and Mechanics, 47(4):461–466, 1983.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  254. V.F. Zhuravlev. The application of monomial Lie groups to the problem of asymptotically integrating equations of mechanics. Journal of Applied Mathematics and Mechanics, 50(3):260–265, 1986.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  255. V.F. Zhuravlev. Singular directions in the configuration space of linear vibrating systems. Journal of Applied Mathematics and Mechanics, 56(1):13–19, 1992.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  256. V.F. Zhuravlev and D.M. Klimov. Prikladnye Metody v Teorii Kolebanii. Nauka, Moscow, 1988. Edited and with a foreword by A. Yu. Ishlinskiı̆.

    Google Scholar 

  257. Z.T. Zhusubaliyev and Mosekilde E. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pilipchuk, V.N. (2023). Singular Trajectories of Forced Vibrations. In: Oscillators and Oscillatory Signals from Smooth to Discontinuous. Springer, Cham. https://doi.org/10.1007/978-3-031-37788-4_11

Download citation

Publish with us

Policies and ethics

Navigation