Role of Plant Extracts and Biostimulant in Mitigating Plant Drought and Salinity Stress

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 2

Abstract

Phytoconstituents influence biochemical and enzymatic processes by serving as substrates, cofactors, and inhibitors. Numerous phytochemicals have been utilized to cure a variety of illnesses and stop the spread of disease. They offer protection to plants from both biotic and abiotic stressors. It is important to improve their goods to acquire the best concentrations and identify acceptable alternative sources in order to save costs because the presence of bioactive chemicals varies in quantity. In this regard, many classes of components in plant extracts have been identified, including alkaloids, polysaccharides, polyphenols, fatty alcohols, terpenoids, indole, pyridine, essential oils, and phytosterols. Plant extracts and biostimulants, which are bioactive substances produced from plants, aid in the pro-ecological production of strategically important crops. In response to environmental stress, a variety of nitrogenous substances present in protein hydrolysates, including betaines, amino acids, polyamines, nonprotein amino acids, hormones, and others, act as biostimulants of plant growth, metabolic production, and recovery. Utilizing natural nanoparticles to minimize the negative effects of environmental pressures on plants is a relatively new area. Agriculture may employ nanoparticles in a lucrative and environmentally responsible way to deal with scarce water resources and to strengthen crops’ tolerance to drought stress. A seaweed (macroalgae) extract can boost plant growth and tolerance to harmful environmental factors like salt and drought by triggering biochemical and genetic pathways that give the plant resilience. The study of and application of phytochemicals as abiotic stress mitigators has significantly increased with the development of contemporary technologies. The utilization of plant extracts and biostimulants in their natural form or in nanometric form as environmentally benign external factors to aid plants in withstanding the detrimental effects of environmental conditions that occur in drought or salinity is discussed and described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Mageed TA, Gyushi MA, Hemida KA, El-Saadony MT, Abd El-Mageed SA, Abdalla H, Abu Qamar SF, El-Tarabily KA, Abdelkhalik A (2022) Coapplication of effective microorganisms and nanomagnesium boosts the agronomic, physio-biochemical, osmolytes, and antioxidants defenses against salt stress in Ipomoea batatas. Front Plant Sci 13:883274. https://doi.org/10.3389/fpls.2022.883274

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdou NM, El-Saadony FM, Roby MH, Mahdy HA, El-Shehawi AM, Elseehy MM, El-Tahan AM, Abdalla H, Saad AM, Abou Sreea AIB (2022) Foliar spray of potassium silicate, aloe extract composite and their effect on growth and yielding capacity of roselle (Hibiscus sabdariffa L.) under water deficit stress conditions. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2022.02.033

  • Abou-Alhamd FM, Loutfy N (2020) Ocimum basilicum leaf extract induces salinity stress tolerance in Faba bean plants. Egypt J Bot 60(3):681–690

    Google Scholar 

  • Aganchich B, Wahbi S, Yaakoubi A, El-Aououad H, Bota J (2022) Effect of arbuscular mycorrhizal fungi inoculation on growth and physiology performance of olive tree under regulated deficit irrigation and partial rootzone drying. S Afr J Bot 148:1–10

    CAS  Google Scholar 

  • Ahmad A, Blasco B, Martos V (2022) Combating salinity through natural plant extracts based biostimulants: a review. Front Plant Sci 13:1665. https://doi.org/10.3389/fpls.2022.862034

    Article  Google Scholar 

  • Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M (2016) Progress in the preparation and application of modified biochar for improved contaminant removal from water and waste water. Bioresour Technol 21(4):836–851

    Google Scholar 

  • Alabdallah NM, Alluqmani SM (2022) The synthesis of polysaccharide crude nanoparticles extracts from Taif rose petals and its effect on eggplant seedlings under drought and salt stress. J King Saud Univ Sci 34(5):102055. https://doi.org/10.1016/j.jksus.2022.102055

    Article  Google Scholar 

  • Alenezi NA, Al-Qurainy F, Tarroum M, Nadeem M, Khan S, Salih AM, Shaikhaldein HO, Alfarraj NS, Gaafar ARZ, Al-Hashimi A, Alansi S (2022) Zinc oxide nanoparticles (ZnO NPs), biosynthesis, characterization and evaluation of their impact to improve shoot growth and to reduce salt toxicity on Salvia officinalis in vitro cultivated. PRO 10(7):1273. https://doi.org/10.3390/pr10071273

    Article  CAS  Google Scholar 

  • Alharby HF, Alzahrani YM, Rady MM (2020) Seeds pretreatment with zeatin or maize grain-derived organic biostimulant improved hormonal contents, polyamine gene expression, and salinity and drought tolerance of wheat. Int J Agric Biol 24(4):714–724. https://doi.org/10.17957/IJAB/15.1491

    Article  CAS  Google Scholar 

  • Ali EF, Hassan FAS, Elgimabi M (2018) Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. S Afr J Bot 119:383–389. https://doi.org/10.1016/j.sajb.2018.10.003

    Article  Google Scholar 

  • Ali Q, Shehzad F, Waseem M, Shahid S, Hussain A, Haider ZM, Habib N, Hussain SM, Javed M, Perveen R (2020) Plant based biostimulants and plant stress responses. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I, Holder. Springer Nature, Singapore, pp 185–202. https://doi.org/10.1007/978-981-15-2156-0_22

    Chapter  Google Scholar 

  • Ali R, Gul H, Rauf M, Arif M, Hamayun M, Khilji SA, Ud-Din A, Sajid ZA, Lee IJ (2022a) Growth-promoting endophytic fungus (Stemphylium lycopersici) ameliorates salt stress tolerance in maize by balancing ionic and metabolic status. Front Plant Sci 13:565–890. https://doi.org/10.3389/fpls.2022.890565

    Article  Google Scholar 

  • Ali J, Jan I, Ullah H, Ahmed N, Alam M, Ullah R, El-Sharnouby M, Kesba H, Shukry M, Sayed S, Nawaz T (2022b) Influence of Ascophyllum nodosum extract foliar spray on the physiological and biochemical attributes of okra under drought stress. Plants 11(6):790. https://doi.org/10.3390/plants11060790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(4):42. https://doi.org/10.3390/plants6040042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azeem MA, Shah FH, Ullah A, Ali K, Jones DA, Khan MEH, Ashraf A (2022) Biochemical characterization of halotolerant bacillus safensis pm22 and its potential to enhance growth of maize under salinity stress. Plan Theory 11(13):1721

    CAS  Google Scholar 

  • Azmat A, Tanveer Y, Yasmin H, Hassan MN, Shahzad A, Reddy M, Ahmad A (2022) Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants. Chemosphere 297:133982. https://doi.org/10.1016/j.chemosphere.2022.133982

    Article  CAS  PubMed  Google Scholar 

  • Azwanida NN (2015) A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants 4(3):1000196

    Google Scholar 

  • Badem A, Söylemez S (2022) Effects of nitric oxide and silicon application on growth and productivity of pepper under salinity stress. J King Saud Univ Sci 34(6):1–11. https://doi.org/10.1016/j.jksus.2022.102189

    Article  Google Scholar 

  • Bakry BA, Ibrahim FM, Abdallah MMS, El-Bassiouny HMS (2016) Effect of banana peel extract or tryptophan on growth, yield and some biochemical aspects of quinoa plants under water deficit. Int J Pharmtech Res 9(8):276–287

    CAS  Google Scholar 

  • Baltazar BO, Spinoso JL, Mancilla-Álvarez E, Bello-Bello JJ (2022) Arbuscular mycorrhizal fungi induce tolerance to salinity stress in taro plantlets (Colocasia esculenta l. schott) during acclimatization. Plants 11(13):1780. https://doi.org/10.3390/plants11131780

    Article  CAS  Google Scholar 

  • Bartwal A, Mall R, Lohani P, Guru SK, Arora S (2013) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32(1):216–232. https://doi.org/10.1007/s00344-012-9272-x

    Article  CAS  Google Scholar 

  • Barzin G, Kazemi MM, Entezari M (2022) The interaction effects of NaCl stress and sodium nitroprusside on growth, physiological and biochemical responses of Calendula officinalis L. Biologia 77(6):2081–2091. https://doi.org/10.1007/s11756-022-01068-w

    Article  CAS  Google Scholar 

  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48

    CAS  Google Scholar 

  • Bhan M (2017) Ionic liquids as green solvents in herbal extraction. Int J Adv Res Dev 2:10–12

    Google Scholar 

  • Borde M, Dudhane M, Kulkarni M (2017) Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. In: Mycorrhiza eco-physiology, secondary metabolites, nanomaterials, pp 71–86. https://doi.org/10.1007/978-3-319-57849-1_5

    Chapter  Google Scholar 

  • Brazales DK, Romero JY, Vences MÁ, Torres M, Aviles NY, Sohlenkamp C, Serrano M (2022) Transcriptional characterization of the biostimulant effect of Moringa oleifera leaf extracts using Arabidopsis thaliana as a model. S Afr J Bot 144:250–256. https://doi.org/10.1016/j.sajb.2021.09.011

    Article  CAS  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41. https://doi.org/10.1007/s11104-014-2131-8

    Article  CAS  Google Scholar 

  • Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A (2021) Microbial biostimulants as response to modern agriculture needs: composition, role and application of these innovative products. Plants 10(8):1533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cham R, Abtahi SA, Jafarinia M, Yasrebi J (2022) Physiological responses of Dracocephalum kotschyi Boiss to drought stress and Bio-fertilizers. S Afr J Bot 148:180–189. https://doi.org/10.1016/j.sajb.2022.04.008

    Article  CAS  Google Scholar 

  • Chapman C, Rossi S, Yuan B, Huang B (2022) Differential regulation of amino acids and nitrogen for drought tolerance and post stress recovery in cree** bent grass. J Am Soc Hortic Sci 147(4):208–215. https://doi.org/10.21273/JASHS05215-22

    Article  CAS  Google Scholar 

  • Chojnacka K, Michalak I, Dmytryk A, Wilk R, Górecki H (2015) Innovative natural plant growth biostimulants. In: Shishir S, Pant KK (eds) Advances in fertilizer technology II. Studium Press LLC, pp 452–489

    Google Scholar 

  • Cisse EHM, Zhang LJ, Pu YJ, Miao LF, Li DD, Zhang J, Yang F (2022) Exogenous Ca2+ associated with melatonin alleviates drought-induced damage in the woody tree Dalbergia odorifera. J Plant Growth Regul 4(16):2359–2374. https://doi.org/10.1007/s00344-021-10449-5

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y (2015) Biostimulants in horticulture. Sci Hortic 196:1–2. https://doi.org/10.1016/j.scienta.2015.10.044

    Article  Google Scholar 

  • Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, Rouphael Y (2015) Protein hydrolysates as biostimulants in horticulture. Sci Hortic 196:28–38

    CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 2(4):564–582. https://doi.org/10.1128/CMR.12.4.564

    Article  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393. https://doi.org/10.1007/s10811-010-9560-4

    Article  CAS  Google Scholar 

  • Damalas CA, Koutroubas SD (2022) Exogenous application of salicylic acid for regulation of sunflower growth under abiotic stress: a systematic review. Biologia 77(7):1685–1697. https://doi.org/10.1007/s11756-022-01020-y

    Article  CAS  Google Scholar 

  • Das K, Tiwari RK, Shrivastava DK (2010) Techniques for evaluation of medicinal plant products as antimicrobial agents: current methods and future trends. J Med Plants Res 4(2):104–111

    Google Scholar 

  • Desoky ESM, Elrys AS, Mansour E, Eid RS, Selem E, Rady MM, Ali EF, Mersal GA, Semida WM (2021) Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Sci Hortic 288:110340

    CAS  Google Scholar 

  • Di-Stasio E, Cirillo V, Raimondi G, Giordano M, Esposito M, Maggio A (2020) Osmo-priming with seaweed extracts enhances yield of salt-stressed tomato plants. Agronomy 10(10):1559. https://doi.org/10.3390/agronomy10101559

    Article  CAS  Google Scholar 

  • Doughari JH (2012) Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents. In: Rao V (ed) Phytochemicals - a global perspective of their role in nutrition and health. ISBN: 978-953-51-0296-0.

    Google Scholar 

  • Dowom SA, Karimian Z, Ei Dehnavi MM, Samiei L (2022) Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biol 22(1):364. https://doi.org/10.1186/s12870-022-03689-4

    Article  CAS  Google Scholar 

  • Du-Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021

    Article  CAS  Google Scholar 

  • El-Banna MF, AL-Huqail AA, Farouk S, Belal BE, El-Kenawy MA, Abd El-Khalek AF (2022) Morpho-physiological and anatomical alterations of salt-affected Thompson seedless grapevine (Vitis vinifera L.) to Brassinolide spraying. Horticulturae 8(7): 568. https://doi.org/10.3390/horticulturae8070568

  • El-Katony TM, Deyab MA, El-Adl MF, Ward FME (2020) The aqueous extract and powder of the brown alga Dictyota dichotoma (Hudson) differentially alleviate the impact of abiotic stress on rice (Oryza sativa L.). Physiol Mol Biol Plants 26(6):1155–1171. https://doi.org/10.1007/s12298-020-00805-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsayed SIM, Mazhar AMA, El-Sayed SM, Said AM (2022) Improvement the drought tolerance of Eucalyptus citriodora seedling by spraying basil leaves extract and its influence on growth, volatile oil components and some enzymatic activity. Egypt J Chem 65(12):619–635. https://doi.org/10.21608/EJCHEM.2022.127566.5662

    Article  Google Scholar 

  • El-Tantawy EM (2009) Behavior of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pak J Biol Sci 12(17):1164–1173. https://doi.org/10.3923/pjbs.2009.1164.1173

    Article  CAS  PubMed  Google Scholar 

  • Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM (2019) Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front Plant Sci 10:340. https://doi.org/10.3389/fpls.2019.00340

    Article  PubMed  PubMed Central  Google Scholar 

  • Gholamzadeh AA, Mousavi-Fard S, Nejad RA (2022) Morphological and physiological characteristics for evaluation of salicylic acid effects on Celosia argentea L. under salinity stress. Iran. J Plant Physiol 12(1):4027–4037. https://doi.org/10.30495/IJPP.2022.689078

    Article  Google Scholar 

  • Giglou MT, Giglou RH, Esmaeilpour B, Azarmi R, Padash A, Falakian M, Śliwka J, Gohari G, Lajayer HM (2022) A new method in mitigation of drought stress by chitosan-coated iron oxide nanoparticles and growth stimulant in peppermint. Ind Crop Prod 187:115286. https://doi.org/10.1016/j.indcrop.2022.115286

    Article  CAS  Google Scholar 

  • Gong Z, **ong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Zhu JK (2020) Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63:635–674. https://doi.org/10.1007/s11427-020-1683-x

    Article  PubMed  Google Scholar 

  • Haghighi TM, Saharkhiz MJ, Kavoosi G, Jowkar A (2022) Monitoring amino acid profile and protein quality of Licorice (Glycyrrhiza glabra L.) under drought stress, silicon nutrition and mycorrhiza inoculation. Sci Hortic 295:110808

    CAS  Google Scholar 

  • Hajihashemi S, Kazemi S (2022) The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC Plant Biol 22:148. https://doi.org/10.1186/s12870-022-03531-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. In: Donald L (ed) Advanced in agronomy, vol 130. Academic Press, pp 141–174. https://doi.org/10.1016/bs.agron.2014.10.001

    Chapter  Google Scholar 

  • Hanafy SR (2017) Using Moringa oleifera leaf extract as a biofertilizer for drought stress mitigation of Glycine max L. Plants Egypt J Bot 57(2):281–292. https://doi.org/10.21608/ejbo.2017.596.1027

    Article  Google Scholar 

  • Haroon U, Khizar M, Liaquat F, Ali M, Akbar M, Tahir K, Batool SS, Kamal A, Chaudhary HJ, Munis MFH (2022) Halotolerant plant growth-promoting rhizobacteria induce salinity tolerance in wheat by enhancing the expression of SOS genes. J Plant Growth Regul 41(6):2435–2448. https://doi.org/10.1007/s00344-021-10457-5

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan MHM, Mahmud JA, Baluska F, Fujita M (2018) Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol Rep 12:77–92. https://doi.org/10.1007/s11816-018-0480-0

    Article  Google Scholar 

  • Hassan FAS, Fetouh MI (2019) Does moringa leaf extract have preservative effect improving the longevity and postharvest quality of gladiolus cut spikes? Sci Hortic 250:287–293

    CAS  Google Scholar 

  • Hassan F, Al-Yasi H, Ali E, Alamer K, Hessini K, Attia H, El-Shazly S (2021) Mitigation of salt-stress effects by moringa leaf extract or salicylic acid through motivating antioxidant machinery in damask rose. Can J Plant Sci 101(2):157–165. https://doi.org/10.1139/CJPS-2020-0127

    Article  CAS  Google Scholar 

  • Hassanein AR, Abdelkader FA, Faramawy MH (2019) Moringa leaf extracts as biostimulants-inducing salinity tolerance in the sweet basil plant. Egypt J Bot 59(2):303–318

    Google Scholar 

  • Hossain A, Pamanick B, Venugopalan VK, Ibrahimova U, Rahman MA, Siyal AL, Maitra S, Chatterjee S, Aftab T (2022) Emerging roles of plant growth regulators for plants adaptation to abiotic stress–induced oxidative stress. In: Emerging plant growth regulators in agriculture. Academic Press, pp 1–72. https://doi.org/10.1016/B978-0-323-91005-7.00010-2

    Chapter  Google Scholar 

  • Ibrahim AA (2022) Alleviation the adverse effect of the salinity on cotton plant by using azolla extract. Egypt J Chem 65(7):155–164

    Google Scholar 

  • Ingle KP, Deshmukh AG, Padole DA, Dudhare MS, Moharil MP, Khelurkar VC (2017) Phytochemicals: extraction methods, identification, and detection of bioactive compounds from plant extracts. J Pharm Phytoch 6:32–36

    CAS  Google Scholar 

  • Iqbal MS, Singh AK, Ansari MI (2020) Effect of drought stress on crop production. In: Rakshit A, Singh HB, Singh AK, Singh US, Fraceto L (eds) New frontiers in stress management for durable agriculture. Springer, Singapore, pp 35–47. https://doi.org/10.1007/978-981-15-1322-0_3

    Chapter  Google Scholar 

  • Islam AT, Ullah H, Himanshu SK, Tisarum R, Cha-um S, Datta A (2022) Effect of salicylic acid seed priming on morpho-physiological responses and yield of baby corn under salt stress. Sci Hortic 304:11304

    Google Scholar 

  • Jacomassi LM, de Oliveira VJ, Oliveira MP, Momesso L, de Siqueira GF, Crusciol CAC (2022) A seaweed extract-based biostimulant mitigates drought stress in sugarcane. Front Plant Sci 13:865291. https://doi.org/10.3389/fpls.2022.865291

    Article  PubMed  PubMed Central  Google Scholar 

  • Kauffman GL, Kneivel DP, Watschke TL (2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability and polyphenol production of perennial ryegrass. Crop Sci 47(1):261–267

    CAS  Google Scholar 

  • Kaur H, Hussain SJ, Kaur G, Poor P, Alamri S, Siddiqui MH, Khan MIR (2022) Salicylic acid improves nitrogen fixation, growth, yield and antioxidant defence mechanisms in chickpea genotypes under salt stress. J Plant Growth Regul 41(5):2034–2047

    CAS  Google Scholar 

  • Khaliq A, Ibrahim MU, Hussain S, Ul Z, Haq M, Al-Huqail AA, Nawaz M, Ali B, Khan F, Ali HM, Siddiqui MH (2022) The hormetic effects of a brassica water extract triggered wheat growth and antioxidative defense under drought stress. Appl Sci 12(9):45–82

    Google Scholar 

  • Kim ST, Yoo SJ, Weon HY, Song J, Sang MK (2022) Bacillus butanolivorans KJ40 contributes alleviation of drought stress in pepper plants by modulating antioxidant and polyphenolic compounds. Sci Hortic 301:1111

    Google Scholar 

  • Kumar S, Korra T, Singh UB, Singh S, Bisen K (2022) Microalgal based biostimulants as alleviator of biotic and abiotic stresses in crop plants. In: Singh HB, Vaishnav A (eds) New and future developments in microbial biotechnology and bioengineering, pp 195–216. https://doi.org/10.1016/B978-0-323-85577-8.00013-5

    Chapter  Google Scholar 

  • Lalarukh I, Al-Dhumri SA, Al-Ani LKT, Hussain R, Al-Mutairi KA, Mansoora N, Amjad SF, Abbas MH, Abdelhafez AA, Poczai P, Meena KR (2022a) A combined use of rhizobacteria and moringa leaf extract mitigates the adverse effects of drought stress in wheat (Triticum aestivum L). Front Microbiol 13:813–415

    Google Scholar 

  • Lalarukh I, Zahra N, Al Huqail AA, Amjad SF, Al-Dhumri SA, Ghoneim AM, Alshahri AH, Almutari MM, Alhusayni FS, Al-Shammari WB, Poczai P (2022b) Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars. Environ Technol Innov 7:102–799

    Google Scholar 

  • Lopes ÁL, Setubal IS, Neto VP, Zilli JE, Rodrigues AC, Bonifacio A (2022) Synergism of Bradyrhizobium and Azospirillum baldaniorum improves growth and symbiotic performance in lima bean under salinity by positive modulations in leaf nitrogen compounds. Appl Soil Ecol 180:104–603

    Google Scholar 

  • Ma H, Li P, Liu X, Li C, Zhang S, Wang X, Tao X (2022) Poly-γ-glutamic acid enhanced the drought resistance of maize by improving photosynthesis and affecting the rhizosphere microbial community. BMC Plant Biol 22(1):11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdavian K (2022) Effect of salicylic acid and calcium chloride on lipid peroxidation and scavenging capacity of radical of red bean (Phaseolus calcaratus L.) under salt stress. Int J Hortic Sci Technol 9(1):55–72

    CAS  Google Scholar 

  • Mahmoudand RA, Dahab AA (2018) Response of apple seedlings grown under saline conditions to natural plant extracts. Biosci Res 15(2):589–601

    Google Scholar 

  • Majekodunmi SO (2015) Review of extraction of medicinal plants for pharmaceutical research. MRJMMS 3:521–527

    Google Scholar 

  • Manoj BS, Gupta M, Jeelani MI, Gupta S (2022) Chitosan augments bioactive properties and drought resilience in drought-induced red kidney beans. Food Res Int 159:111–597

    Google Scholar 

  • Morton MJL, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel—dissecting the genetics of salt tolerance. Plant J 97:148–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Nakhaie A, Habibi G, Vaziri A (2022) Exogenous proline enhances salt tolerance in acclimated Aloe vera by modulating photosystem II efficiency and antioxidant defense. S Afr J Bot 47:1171–1180

    Google Scholar 

  • Naz H, Akram NA, Ashraf M, Hefft DI, Jan BL (2022) Leaf extract of neem (Azadirachta indica) alleviates adverse effects of drought in quinoa (Chenopodium quinoa Willd.) plants through alterations in biochemical attributes and antioxidants. Saudi. J Biol Sci 29(3):1367–1374

    CAS  Google Scholar 

  • Noor R, Yasmin H, Ilyas N, Nosheen A, Hassan MN, Mumtaz S, Khan N, Ahmad A, Ahmad P (2022) Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress. Chemosphere 292:133–201

    Google Scholar 

  • Omer AM, Osman MS, Badawy AA (2022) Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. Bot Stud 63(1):15. https://doi.org/10.1186/s40529-022-00345-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omidi M, Khandan-Mirkohi A, Kafi M, Zamani Z, Ajdanian L, Babaei M (2022) Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biol 22(1):373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osman HS, Rady A, Awadalla A, Omara AED, Hafez EM (2022) Improving the antioxidants system, growth, and sugar beet quality subjected to long-term osmotic stress by phosphate solubilizing bacteria and compost tea. Int J Plant Prod 16(1):119–135

    Google Scholar 

  • Othibeng K, Nephali L, Myoli A, Buthelezi N, Jonker W, Huyser J, Tugizimana F (2022) Metabolic circuits in sap extracts reflect the effects of a microbial biostimulant on maize metabolism under drought conditions. Plants 11(4):510. https://doi.org/10.3390/plants11040510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Tripathi S (2014) Concept of standardization, extraction, and pre-phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem 2(5):15–119

    Google Scholar 

  • Pandeya V, Ansarib MW, Tulac S, Sahooc RK, Bainsa GK, Tutejae N, Shuklaa A (2016) Ocimum sanctum leaf extract induces drought stress tolerance in rice. Plant Signal Behav 11(5):1–9

    Google Scholar 

  • Pongprayoon W, Roytrakul S, Pichayangkura R, Chadchawan S (2013) The role of hydrogen perox-ide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Effect of chitosan on plant growth, flowering and corms yield of potted freesia. Plant Growth Regul 70(2):159–173

    CAS  Google Scholar 

  • Pourhadi M, Badi HN, Mehrafarin A, Omidi H, Hajiaghaee R (2018) Phytochemical and growth responses of Mentha piperita to foliar application of biostimulants under greenhouse and field conditions. Herba Polonica 64(2):1–12

    Google Scholar 

  • Rady MM, Mohamed GF (2015) Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci Hortic 193:105–113

    CAS  Google Scholar 

  • Rehman H, Nawaz MQ, Basra SMA, Afzal I, Yasmeen A, Hassan FU (2014) Seed priming influence on early cropgrowth, phenological development and yield performance of linola (Linumusita tissimum L.). J Integr Agric 13:990–996

    Google Scholar 

  • Ri K, Ri J (2022) Hydrolysis of willow (Salix babylonica L.) Extract alleviates drought effects on Houttuynia Thunb. Theor Exp Plant Physiol 34(1):71–81

    CAS  Google Scholar 

  • Roumani A, Biabani A, Karizaki AR, Alamdari EG (2022) Foliar salicylic acid application to mitigate the effect of drought stress on isabgol (Plantago ovata forssk). Biochem Syst Ecol 104:104453. https://doi.org/10.1016/j.bse.2022.104453

    Article  CAS  Google Scholar 

  • Rouphael Y, Giordano M, Cardarelli M, Cozzolino E, Mori M, Kyriacou M, Colla G (2018) Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 8(7):126. https://doi.org/10.3390/agronomy8070126

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25(2):163–171

    CAS  PubMed  Google Scholar 

  • Sarwar M, Anjum S, Alam MW, Ali Q, Ayyub CM, Haider MS, Ashraf MI, Mahboob W (2022) Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Sci Rep 12(1):3736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L (2011) Extraction, isolation and characterization of bioactive compounds from plants extracts. Afr J Tradit Complement Altern Med 8:1–10

    CAS  PubMed  Google Scholar 

  • Shaikhaldein HO, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih AM, Alansi S, Al-Hashimi A, Alfagham A, Alkahtani J (2022) Assessment of the impacts of green synthesized silver nanoparticles on Maerua oblongifolia shoots under in vitro salt stress. Materials 15(14):4784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikhalipour M, Mohammadi SA, Esmaielpour B, Zareei E, Kulak M, Ali S, Nouraein M, Bahrami MK, Gohari G, Fotopoulos V (2022) Exogenous melatonin increases salt tolerance in bitter melon by regulating ionic balance, antioxidant system and secondary metabolism-related genes. BMC Plant Biol 22(1):380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudiro C, Guglielmi F, Hochart M, Senizza B, Zhang L, Lucini L, Altissimo A (2022) A Phenomics and metabolomics investigation on the modulation of drought stress by a biostimulant plant extract in tomato (Solanum lycopersicum). Agronomy 12(4):764

    CAS  Google Scholar 

  • Sujeeth N, Petrov V, Guinan KJ, Rasul F, O’Sullivan JT, Gechev TS (2022) Current insights into the molecular mode of action of seaweed-based biostimulants and the sustainability of seaweeds as raw material resources. Int J Mol Sci 23:54–76

    Google Scholar 

  • Suryaman M, Sunarya Y, Istarimila I, Fudholi A (2021) Effect of salinity stress on the growth and yield of mungbean (Vigna radiata (L.) R. Wilczek) treated with mangosteen pericarp extract. Biocatal Agric Biotechnol 36:102–132

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland, p 782

    Google Scholar 

  • Tinte MM, Masike K, Steenkamp PA, Huyser J, van der Hooft JJ, Tugizimana F (2022) Computational metabolomics tools reveal metabolic reconfigurations underlying the effects of biostimulant seaweed extracts on maize plants under drought stress conditions. Metabolites 12(6):487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H (2011) Phytochemical screening and extraction: a review. Int Pharm Sci 1:98–106

    Google Scholar 

  • Trivedi K, Anand KG, Kubavat D, Ghosh A (2022) Role of Kappaphy cusalvarezii seaweed extract and its active constituents, glycine betaine, choline chloride, and zeatin in the alleviation of drought stress at critical growth stages of maize crop. J Appl Phycol 34(3):1791–1804

    CAS  Google Scholar 

  • Ujang ZB, Subramaniam T, Diah MM, Wahid HB, Abdullah BB, Rashid AA, Appleton D (2013) Bioguided fractionation and purification of natural bioactive obtained from Alpiniaconchigera water extract with melanin inhibition activity. J Biomater Nanobiotechnol 4:265–272

    Google Scholar 

  • Vafa ZN, Sohrabi Y, Mirzaghaderi G, Heidari G (2022) Soil microorganisms and seaweed application with supplementary irrigation improved physiological traits and yield of two dryland wheat cultivars. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.855090

  • Voko MP, Kulkarni MG, Ngoroyemoto N, Gupta S, Finnie JF, Van-Staden J (2022) Vermicompost leachate, seaweed extract and smoke-water alleviate drought stress in cowpea by influencing phytochemicals, compatible solutes and photosynthetic pigments. Plant Growth Regul 97(2):327–342

    CAS  Google Scholar 

  • Vranova V, Rejsek K, Skene KR, Formanek P (2011) Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil 342(1):31–48

    CAS  Google Scholar 

  • Wu Y, Li J, Wang J, Dawuda MM, Liao W, Meng X, Yuan H, **e J, Tang Z, Lyu J, Yu J (2022) Heme is involved in the exogenous ALA-promoted growth and antioxidant defense system of cucumber seedlings under salt stress. BMC Plant Biol 22(1):329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Pant Sci 7:2049

    Google Scholar 

  • Yan Q, Li X, **ao X, Chen J, Liu J, Lin C, Guan R, Wang D (2022) Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses. Ecol Evol 12(7):9091

    Google Scholar 

  • Yang Z, Yu J, Merewitz E, Huang B (2012) Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. J Am Soc Hortic Sci 137(2):96–106

    CAS  Google Scholar 

  • Yue Z, Chen Y, Wang Y, Zheng L, Zhang Q, Liu Y, Hu C, Chen C, Ma K, Sun Z (2022) Halotolerant Bacillus altitudinis WR10 improves salt tolerance in wheat via a multi-level mechanism. Front Plant Sci 13:941388

    PubMed  PubMed Central  Google Scholar 

  • Zaki HE, Radwan KS (2022) The use of OSM regulators and antioxidants to mitigate the adverse impacts f salinity stress in diploid and tetraploid potato genotypes (Solanum spp.). Chem Biol Technol Agric 9(1):19

    CAS  Google Scholar 

  • Zeng D, Luo X (2012) Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open J Soil Sci 2:282–288

    Google Scholar 

  • Ziaei M, Pazoki A (2022) Foliar-applied seaweed extract improves yield of common bean (phaseolus vulgaris l.) cultivars through changes in biochemical and fatty acid profile under irrigation regimes. J Soil Sci Plant Nutr 22:2969–2979. https://doi.org/10.1007/s42729-022-00860-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaimaa I. M. Elsayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elsayed, S.I.M., Sabra, A.S., Omer, E.A. (2023). Role of Plant Extracts and Biostimulant in Mitigating Plant Drought and Salinity Stress. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-37428-9_25

Download citation

Publish with us

Policies and ethics

Navigation