Phytohormones as Stress Mitigator in Plants

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 2

Abstract

Climatic change causes many stresses to crops such as drought, salinity, heat, cold, and heavy metal. Abiotic factors in plants have gained global attention and many strategies have been carried out to alleviate these factors in plants. Several protective mechanisms are developed by plants to alleviate stress. These mechanisms include synthesis of phytohormones (organic substances) which are signaling molecules produced within plants at very low concentration. These include JA (jasmonic acid), melatonin, abscisic acid, polyamines, IAA (indole acetic acid), SA (salicylic acid), ethylene, PGPR-mediated phytohormones, brassinosteroids, and GA (gibberellic acid). Some new growth regulators such as strigolactones have been discovered in plants. Phytohormones are plant growth regulators at different stages of development. Extreme conditions, such as stress, initiate signaling pathways of phytohormones that orchestrate adaptive responses even at very low concentrations. This hormonal initiation regulates series of reactions which helps plants to grow in suboptimal growth phases. During abiotic stress conditions, phytohormones’ application helps plants to produce more osmolytes such as polyamines, proline, and others which protect cellular machinery of plants. This chapter deals with understanding the role and mechanism of phytohormones in plants for mitigation of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas T, Nadeem MA, Tanveer A, Matloob A, Zohaib A, Safdar ME, Ali HH, Farooq N, Javaid MM, Tabassum T (2019) Herbicide mixtures and row spacing effects on Fenoxaprop resistant Phalaris minor in wheat. Int J Agric Biol 22(4):840

    Google Scholar 

  • Ahmad A, Aslam Z, Naz M, Hussain S, Javed T, Aslam S, Raza A, Ali HM, Siddiqui MH, Salem MZ (2021) Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. PLoS One 16(12):e0260556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar MS (2019) Salt stress, microbes, and plant interactions: mechanisms and molecular approaches: Volume 2. Springer

    Google Scholar 

  • Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T (2020) Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01777

  • Alcázar R, Bueno M, Tiburcio AF (2020) Polyamines: small amines with large effects on plant abiotic stress tolerance. Cell 9(11):2373

    Google Scholar 

  • Ali S, Hayat K, Iqbal A, **e L (2020) Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 10(9):1323

    CAS  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544

    PubMed  Google Scholar 

  • Aqueel MA, AbM R, Balal RM, Shahid MA, Mustafa I, Javaid MM, Leather SR (2015) Tritrophic interactions between parasitoids and cereal aphids are mediated by nitrogen fertilizer. Insect Sci 22(6):813–820

    CAS  PubMed  Google Scholar 

  • Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S (2020) Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environ Exp Bot 175:104040. https://doi.org/10.1016/j.envexpbot.2020.104040

    Article  CAS  Google Scholar 

  • Asif T, Javaid M, Abdul K, Abbas R, Ahsan A (2012) Allelopathic effect of Echinochloa crus-galli on field crops. Herbologia 13(2):9–17

    Google Scholar 

  • Aziz A, Ashraf M, Asif M, Safdar M, Shahzad S, Javaid M, Akhtar N, Waheed H, Nadeem M, Ali10 S (2019) Impact of mulching materials on weeds dynamics, soil biological properties and lettuce (Lactuca sativa L.) productivity. Int J Bot Stud 4(4):128–134.

    Google Scholar 

  • Babar BH, Tanveer A, Tahir M, Aziz A, Auh A, Nadeem MA, Javaid MM (2009) Allelopathic potential of wild onion (Asphodelus tenuifolius) on the germination and seedling growth of chickpea (Cicer arietinum). Weed Biol Manage 9(2):146–151

    Google Scholar 

  • Babosha AV (2009) Regulation of resistance and susceptibility in wheat–powdery mildew pathosystem with exogenous cytokinins. J Plant Physiol 166(17):1892–1903

    CAS  PubMed  Google Scholar 

  • Banerjee P, Bhadra P (2020) Mini-review on Strigolactones: newly discovered plant hormones. Bioresour Biotech Res Comm 13(3)

    Google Scholar 

  • Biswas S, Shivaprakash M, Maina C (2018) Biosynthesis of phytohormones by potassium solubilising bacteria isolated from banana rhizosphere. Int J Agric Environ Biotechnol 11(3):497–501

    Google Scholar 

  • Bon DJYD, Mander LN, Lan P (2018) Syntheses of gibberellins A15 and A24, the key metabolites in gibberellin biosynthesis. J Org Chem 83(12):6566–6572. https://doi.org/10.1021/acs.joc.8b00876

    Article  CAS  PubMed  Google Scholar 

  • Brenya E, Chen Z-H, Tissue D, Papanicolaou A, Cazzonelli CI (2020) Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens. BMC Plant Biol 20(1):548. https://doi.org/10.1186/s12870-020-02759-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry S, Sidhu GPS (2021) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 1:1–31

    Google Scholar 

  • Chen X, Sun C, Laborda P, He Y, Zhao Y, Li C, Liu F (2019) Melatonin treatments reduce the pathogenicity and inhibit the growth of Xanthomonas oryzae pv. oryzicola. Plant Pathol 68(2):288–296. https://doi.org/10.1111/ppa.12954

    Article  CAS  Google Scholar 

  • Chen K, Li G-J, Bressan RA, Song C-P, Zhu J-K, Zhao Y (2020) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62(1):25–54. https://doi.org/10.1111/jipb.12899

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    CAS  PubMed  Google Scholar 

  • Criado MV, Veliz CG, Roberts IN, Caputo C (2017) Phloem transport of amino acids is differentially altered by phosphorus deficiency according to the nitrogen availability in young barley plants. Plant Growth Regul 82(1):151–160. https://doi.org/10.1007/s10725-017-0247-6

    Article  CAS  Google Scholar 

  • Crosino A, Genre A (2022) Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application. J Plant Interact 17(1):824–839

    CAS  Google Scholar 

  • de Oliveira TS, Bell RW (2022) Introduction to subsoil constraints for crop production. In: Oliveira TS, Bell RW (eds) Subsoil constraints for crop production. Springer International Publishing, Cham, pp 1–10. https://doi.org/10.1007/978-3-031-00317-2

    Chapter  Google Scholar 

  • Dervinis C, Frost CJ, Lawrence SD, Novak NG, Davis JM (2010) Cytokinin primes plant responses to wounding and reduces insect performance. J Plant Growth Regul 29(3):289–296. https://doi.org/10.1007/s00344-009-9135-2

    Article  CAS  Google Scholar 

  • DESA U (2015) United Nations, Department of Economic and Social Affairs, Population Division (UN DESA), world population prospects: the 2015 revision, key findings and advance tables. Working Paper No. ESA/P/WP. 241, United Nations, Department of Economics.

    Google Scholar 

  • Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, BerthomĂ© R (2021) Fight hard or die trying: when plants face pathogens under heat stress. New Phytol 229(2):712–734

    PubMed  Google Scholar 

  • EL Sabagh A, Islam MS, Hossain A, Iqbal MA, Mubeen M, Waleed M, Reginato M, Battaglia M, Ahmed S, Rehman A, Arif M, Athar H-U-R, Ratnasekera D, Danish S, Raza MA, Rajendran K, Mushtaq M, Skalicky M, Brestic M, Soufan W, Fahad S, Pandey S, Kamran M, Datta R, Abdelhamid MT (2022) Phytohormones as growth regulators during abiotic stress tolerance in plants. Front Agron 4. https://doi.org/10.3389/fagro.2022.765068

  • Eleiwa ME, Bafeel SO, Ibrahim S (2011) Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions. I-Growth parameters and photosynthetic pigments. Aust J Basic Appl Sci 5(5):58–65

    CAS  Google Scholar 

  • Etesami H (2022) Root nodules of legumes: a suitable ecological niche for isolating non-rhizobial bacteria with biotechnological potential in agriculture. Curr Res Biotechnol

    Google Scholar 

  • FĂ bregas N, Fernie AR (2022) The reliance of phytohormone biosynthesis on primary metabolite precursors. J Plant Physiol 268:153589

    PubMed  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, **ong D, Saud S, Hongyan L, Cui K, Huang J (2015) Crop plant hormones and environmental stress. Sustain Agric Rev 1:371–400

    Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01147

  • Faizan M, Faraz A, Sami F, Siddiqui H, Yusuf M, Gruszka D, Hayat S (2020) Role of strigolactones: Signalling and crosstalk with other phytohormones. Open Life Sci 15(1):217–228

    PubMed  PubMed Central  Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol Environ Saf 147:1010–1016

    CAS  PubMed  Google Scholar 

  • Fattorini L, Ronzan M, Piacentini D, Della Rovere F, De Virgilio C, Sofo A, Altamura M, Falasca G (2017) Cadmium and arsenic affect quiescent centre formation and maintenance in Arabidopsis thaliana post-embryonic roots disrupting auxin biosynthesis and transport. Environ Exp Bot 144:37–48

    CAS  Google Scholar 

  • Gill A, Patranabis S (2021) Phytohormones as potential anticancer agents. Int J Res Appl Sci Biotechnol 8(3):37–43

    Google Scholar 

  • GroĂźkinsky DK, Tafner R, Moreno MV, Stenglein SA, GarcĂ­a de Salamone IE, Nelson LM, Novák O, Strnad M, van der Graaff E, Roitsch T (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6(1):23310. https://doi.org/10.1038/srep23310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gull A, Lone AA, Wani NUI (2019) Biotic and abiotic stresses in plants. In: Abiotic biotic stress plants:1–19

    Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596. https://doi.org/10.1155/2014/701596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta D, Singh G, Tiwari S, Patel A, Fatima A, Dubey A, Naaz N, Pandey J, Prasad SM (2021) Salt stress toxicity amelioration by Phytohormones, synthetic product, and nutrient amendment practices. Physiology of salt stress in plants: perception, signalling, omics and tolerance mechanism, pp. 198–228

    Google Scholar 

  • Hai NN, Chuong NN, Tu NHC, Kisiala A, Hoang XLT, Thao NP (2020) Role and regulation of cytokinins in plant response to drought stress. Plan Theory 9(4):422

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Bhuiyan TF, Anee TI, Inafuku M, Oku H, Fujita M (2017) Salicylic acid: an all-rounder in regulating abiotic stress responses in plants. Phytohormones-Signaling Mechanisms and crosstalk in plant development and stress responses 16:31–75.

    Google Scholar 

  • Hassan FAS, Ali EF, Alamer KH (2018) Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena miller var. trigintipetala Dieck. S Afr J Bot 116:96–102. https://doi.org/10.1016/j.sajb.2018.02.399

    Article  CAS  Google Scholar 

  • He M, He C-Q, Ding N-Z (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    PubMed  PubMed Central  Google Scholar 

  • Hönig M, PlĂ­halová L, HusiÄŤková A, Nisler J, DoleĹľal K (2018) Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int J Mol Sci 19(12):4045

    PubMed  PubMed Central  Google Scholar 

  • Hu S, Ding Y, Zhu C (2020) Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci 11:375

    PubMed  PubMed Central  Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85. https://doi.org/10.1016/j.envexpbot.2010.06.002

    Article  CAS  Google Scholar 

  • Iqbal M, Iqbal MM, Saghir A, Mahmood A, Akram M, Husnain H, Shahid M, Ahmad S, Raza A, Hussain A (2021) Performance of early and late planting cotton genotypes under agro-ecological conditions of Multan, Punjab, Pakistan. Pak J Agric Res 34(3):569

    Google Scholar 

  • Javaid MM, Tanveer A (2013) Optimization of application efficacy for POST herbicides with adjuvants on three-cornered jack (Emex australis Steinheil) in wheat. Weed Technol 27(3):437–444

    CAS  Google Scholar 

  • Javaid M, Tanveer A (2014) Germination ecology of E mex spinosa and E mex australis, invasive weeds of winter crops. Weed Res 54(6):565–575

    Google Scholar 

  • Javaid M, Tanveer A, Ahmad R, Yaseen M, Khaliq A (2012) Optimizing activity of herbicides at reduced rate on Emex spinosa campd. with adjuvants. Planta Daninha 30:425–435

    Google Scholar 

  • Javaid M, Zia A, Waheed H, Nargis J, Shahid A, Aziz A, Wasaya A (2020) Effect of isoproturon with and without adjuvants on photosynthetic attributes of wheat and its associated weeds. Planta Daninha 38

    Google Scholar 

  • Javaid MM, Florentine SK, Ashraf M, Mahmood A, Sattar A, Wasaya A, Li FM (2022) Photosynthetic activity and water use efficiency of Salvia verbenaca L. under elevated CO2 and water-deficit conditions. J Agron Crop Sci 208(4):536–551

    CAS  Google Scholar 

  • Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP (2021) Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review. Physiol Plant 172(2):1106–1132

    CAS  PubMed  Google Scholar 

  • Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P (2019) Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 225:627–638. https://doi.org/10.1016/j.chemosphere.2019.03.026

    Article  CAS  PubMed  Google Scholar 

  • Khalid MF, Hussain S, Ahmad S, Ejaz S, Zakir I, Ali MA, Ahmed N, Anjum MA (2019) Impacts of abiotic stresses on growth and development of plants. In: Plant tolerance to environmental stress. CRC Press, pp 1–8

    Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32(1):121–132

    Google Scholar 

  • Kothari A, Lachowiec J (2021) Roles of Brassinosteroids in mitigating heat stress damage in cereal crops. Int J Mol Sci 22(5):2706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Guo Y, Lan Z, Xu K, Chang J, Ahammed GJ, Ma J, Wei C, Zhang X (2021a) Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants. Hortic Res 8. https://doi.org/10.1038/s41438-021-00496-0

  • Li N, Euring D, Cha JY, Lin Z, Lu M, Huang L-J, Kim WY (2021b) Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.627969

  • Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem. Springer International Publishing, Cham, pp 159–182. https://doi.org/10.1007/978-3-319-24654-3_7

    Chapter  Google Scholar 

  • Mahmood A, Javaid MM, Aziz M, Shahzad AN, Rehman A, Honermeier B (2012) Yield and quality response of sorghum hybrids to different planting densities and sowing times. Int J Agric Appl Sci 4(1)

    Google Scholar 

  • Mahmood A, Bibi S, Naqve M, Javaid MM, Zia MA, Jabbar A, Ud-Din W, Attia KA, Khan N, Al-Doss AA (2022a) Physiological, Biochemical, and yield responses of linseed (Linum usitatissimum L.) in α-Tocopherol-mediated alleviation of salinity stress. Front Plant Sci 13

    Google Scholar 

  • Mahmood A, Wang X, Ali A, Awan MI, Ali L, Fiaz S, Naqve M, Hassan MU, Javaid MM, Wang H (2022b) Bio-methane production from maize with varying nitrogen levels and harvesting times under semi-arid conditions of Pakistan. Pol J Environ Stud 31(3)

    Google Scholar 

  • Manghwar H, Hussain A, Ali Q, Liu F (2022) Brassinosteroids (BRs) role in plant development and co** with different stresses. Int J Mol Sci 23(3):1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mark C, ZĂłr K, Heiskanen A, Dufva M, EmnĂ©us J, Finnie C (2016) Monitoring intra- and extracellular redox capacity of intact barley aleurone layers responding to phytohormones. Anal Biochem 515:1–8. https://doi.org/10.1016/j.ab.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  • More N, Verma A, Bharagava RN, Kharat AS, Gautam R, Navaratna D (2022) Sustainable development in agriculture by revitalization of PGPR. In: Bioremediation. CRC Press, pp 127–142

    Google Scholar 

  • Mostofa MG, Ha CV, Rahman MM, Nguyen KH, Keya SS, Watanabe Y, Itouga M, Hashem A, Abd-Allah EF, Fujita M, Trans L-SP (2021, 1815) Strigolactones modulate cellular antioxidant defense mechanisms to mitigate arsenate toxicity in rice shoots. Antioxidants 10(11)

    Google Scholar 

  • Mousavi S, Brodie G, Payghamzadeh K, Raiesi T, Srivastava A (2022) Lead bioavailability in the environment, its exposure, and effects. J Adv Environ Health Res 10(1):1–14

    CAS  Google Scholar 

  • Moustafa-Farag M, Mahmoud A, Arnao MB, Sheteiwy MS, Dafea M, Soltan M, Elkelish A, Hasanuzzaman M, Ai S (2020) Melatonin-induced water stress tolerance in plants: recent advances. Antioxidants 9(9):809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niharika SNB, Singh A, Khare S, Yadav V, Bano C, Yadav RK (2021) Mitigating strategies of gibberellins in various environmental cues and their crosstalk with other hormonal pathways in plants: a review. Plant Mol Biol Rep 39(1):34–49. https://doi.org/10.1007/s11105-020-01231-0

    Article  Google Scholar 

  • Niranjana SR, Hariprasad P (2014) Understanding the mechanism involved in PGPR-mediated growth promotion and suppression of biotic and abiotic stress in plants. In: Future challenges in crop protection against fungal pathogens:59.

    Google Scholar 

  • Park H-S, Kazerooni EA, Kang S-M, Al-Sadi AM, Lee I-J (2021) Melatonin enhances the tolerance and recovery mechanisms in Brassica juncea (L.) Czern. under saline conditions. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.593717

  • Plaza-WĂĽthrich S, Blösch R, Rindisbacher A, Cannarozzi G, Tadele Z (2016) Gibberellin deficiency confers both lodging and drought tolerance in small cereals. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00643

  • PoĂłr P, Nawaz K, Gupta R, Ashfaque F, Khan MIR (2022) Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Rep 41(3):675–698. https://doi.org/10.1007/s00299-021-02675-8

    Article  CAS  PubMed  Google Scholar 

  • Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629

    PubMed  PubMed Central  Google Scholar 

  • Rhodes D, Nadolska-Orczyk A (2001) Plant stress physiology. e LS

    Google Scholar 

  • Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, Bhati KK, Kim ST, Gupta R (2020) Ethylene: a master regulator of salinity stress tolerance in plants. Biomol Ther 10(6):959

    CAS  Google Scholar 

  • Rowe JH, Top** JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211 (1):225–239. doi:https://doi.org/https://doi.org/10.1111/nph.13882.

  • Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K (2019) Jasmonic acid signaling pathway in plants. Int J Mol Sci 20(10):2479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rymen B, Kawamura A, Schäfer S, Breuer C, Iwase A, Shibata M, Ikeda M, Mitsuda N, Koncz C, Ohme-Takagi M, Matsui M, Sugimoto K (2017) ABA suppresses root hair growth via the OBP4 transcriptional regulator. Plant Physiol 173(3):1750–1762. https://doi.org/10.1104/pp.16.01945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saberi Riseh R, Ebrahimi-Zarandi M, Tamanadar E, Moradi Pour M, Thakur VK (2021) Salinity stress: toward sustainable plant strategies and using plant growth-promoting rhizobacteria encapsulation for reducing it. Sustainability 13(22):12758

    CAS  Google Scholar 

  • Saddique M, Kamran M, Shahbaz M (2018) Differential responses of plants to biotic stress and the role of metabolites. In: Plant metabolites and regulation under environmental stress. Elsevier, pp. 69–87

    Google Scholar 

  • Saeed W, Naseem S, Ali Z (2017) Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01487

  • Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3. https://doi.org/10.3389/fenvs.2015.00021

  • Saini S, Kaur N, Pati PK (2021) Phytohormones: key players in the modulation of heavy metal stress tolerance in plants. Ecotox Environ Safety 223:112578

    CAS  Google Scholar 

  • Shafi A, Singh AK, Zahoor I (2021) Melatonin: role in abiotic stress resistance and tolerance. In: Plant growth regulators. Springer, pp 239–273

    Google Scholar 

  • Shahbaz M, Ashraf M, Athar H-U-R (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55(1):51–64. https://doi.org/10.1007/s10725-008-9262-y

    Article  CAS  Google Scholar 

  • Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M (2020) The role of salicylic acid in plants exposed to heavy metals. Molecules 25(3):540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17(2):131–137

    CAS  Google Scholar 

  • Shukla MR, Bajwa VS, Freixas-Coutin JA, Saxena PK (2021) Salt stress in Arabidopsis thaliana seedlings: role of indoleamines in stress alleviation. Melatonin Res 4(1):70–83

    Google Scholar 

  • Singh H, Bhat JA, Singh VP, Corpas FJ, Yadav SR (2021) Auxin metabolic network regulates the plant response to metalloids stress. J Hazard Mater 405:124250

    CAS  PubMed  Google Scholar 

  • Sirhindi G, Mir MA, Abd-Allah EF, Ahmad P, Gucel S (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00591

  • Song Y, Diao Q, Qi H (2014) Putrescine enhances chilling tolerance of tomato (Lycopersicon esculentum Mill.) through modulating antioxidant systems. Acta Physiol Plant 36(11):3013–3027. https://doi.org/10.1007/s11738-014-1672-z

    Article  CAS  Google Scholar 

  • Spormann S, Soares C, Teixeira J, Fidalgo F (2021) Polyamines as key regulatory players in plants under metal stress—a way for an enhanced tolerance. Ann Appl Biol 178(2):209–226

    CAS  Google Scholar 

  • Subhash AP, Nandana M, Sivapriya S, Anith K (2021) Microbial inoculants for mineral nutrient solubilization and mobilization. Biota Res Today 3(11):957–960

    Google Scholar 

  • Tanveer A, Arshad MS, Ayub M, Javaid MM, Yaseen M (2012) Effect of temperature, light, salinity, drought stress and seeding depth on germination of Cucumis melo var. agrestis. Pak J Weed Sci Res 18(4)

    Google Scholar 

  • Tanveer A, Mumtaz K, Javaid M, Chaudhry M, Balal R, Khaliq A (2013) Effect of ecological factors on germination of horse purslane (Trianthema portulacastrum). Planta Daninha 31:587–597

    Google Scholar 

  • Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Khan NA, Tran L-SP (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169(1):73–84. https://doi.org/10.1104/pp.15.00663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theocharis A, ClĂ©ment C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Plant 235(6):1091–1105. https://doi.org/10.1007/s00425-012-1641-y

    Article  CAS  Google Scholar 

  • Torres CA, SepĂşlveda G, Kahlaoui B (2017) Phytohormone interaction modulating fruit responses to photooxidative and heat stress on apple (Malus domestica Borkh.). Front Plant Sci 8:2129

    PubMed  PubMed Central  Google Scholar 

  • Uarrota VG, Stefen DLV, Leolato LS, Gindri DM, Nerling D (2018) Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. In: Antioxidants and antioxidant enzymes in higher plants. Springer, pp 207–232

    Google Scholar 

  • Ullah H, Mahmood A, Awan MI, Honermeier B (2015) Effect of row spacing and seed rate on fruit yield, essential oil and composition of anise (Pimpinella anisum L.). Pak J Agric Sci 52(2)

    Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16(1):86. https://doi.org/10.1186/s12870-016-0771-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA (2022) Plants’ physio-biochemical and Phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plan Theory 11(13):1620

    CAS  Google Scholar 

  • Wan X, Yin J, Yan Q, Hu H, Zheng T, Chai Y, Pan W, Gao Y, Li N, Tang B (2022) Sustained-release nanocapsule based on a 3D COF for long-term enzyme prodrug therapy of cancer. Chem Comm 58(39):5877–5880. https://doi.org/10.1039/D2CC00373B

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wang J, Zhao L, Yang S, Song Y (2015) Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals 28(1):123–132. https://doi.org/10.1007/s10534-014-9808-6

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Diao P, Kong L, Yu R, Zhang M, Zuo T, Fan Y, Niu Y, Yan F, Wuriyanghan H (2020) Ethylene enhances seed germination and seedling growth under salinity by reducing oxidative stress and promoting chlorophyll content via ETR2 pathway. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.01066

  • Wang Y, Mostafa S, Zeng W, ** B (2021) Function and mechanism of Jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci 22(16):8568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Wani SA, Mosa KA (2018) Engineering plants for heavy metal stress tolerance. Rendi Lincei Sci Fis Nat 29(3):709–723

    Google Scholar 

  • Weller S, Florentine S, Javaid MM, Welgama A, Chadha A, Chauhan BS, Turville C (2021) Amaranthus retroflexus L.(Redroot Pigweed): Effects of elevated CO2 and soil moisture on growth and biomass and the effect of radiant heat on seed germination. Agronomy 11(4):728

    CAS  Google Scholar 

  • Wen F-p, Zhang Z-h, Bai T, Xu Q, Pan Y-h (2010) Proteomics reveals the effects of gibberellic acid (GA3) on salt-stressed rice (Oryza sativa L.) shoots. Plant Sci 178(2):170–175. https://doi.org/10.1016/j.plantsci.2009.11.006

    Article  CAS  Google Scholar 

  • Wu X, He J, Chen J, Yang S, Zha D (2014) Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma 251(1):169–176. https://doi.org/10.1007/s00709-013-0535-6

    Article  CAS  PubMed  Google Scholar 

  • Yadav B, Jogawat A, Gnanasekaran P, Kumari P, Lakra N, Lal SK, Pawar J, Narayan OP (2021) An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. Plant Gene 25:100264

    Google Scholar 

  • Yu Y, Li Y, Yan Z, Duan X (2021) The role of Cytokinins in plant under salt stress. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10441-z

  • Zain M, Khan I, Chattha M, Qadri R, Anjum S, Hassan M, Mahmood A, Ilyas M (2017) Foliar applied thiourea at different growth stages modulated late sown wheat. Pak J Sci 69(1):39

    CAS  Google Scholar 

  • Zhang H, Yu Z, Yao X, Chen J, Chen X, Zhou H, Lou Y, Ming F, ** Y (2021) Genome-wide identification and characterization of small auxin-up RNA (SAUR) gene family in plants: evolution and expression profiles during normal growth and stress response. BMC Plant Biol 21(1):1–14

    Google Scholar 

  • Zhao D, Wang H, Chen S, Yu D, Reiter RJ (2021) Phytomelatonin: an emerging regulator of plant biotic stress resistance. Trends Plant Sci 26(1):70–82

    CAS  PubMed  Google Scholar 

  • Zulfiqar F, Chen J, Finnegan PM, Younis A, Nafees M, Zorrig W, Hamed KB (2021) Application of Trehalose and salicylic acid mitigates drought stress in sweet basil and improves plant growth. Plan Theory 10(6):1078

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Athar Mahmood or Muhammad Mansoor Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ul Abidin, Z. et al. (2023). Phytohormones as Stress Mitigator in Plants. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-37428-9_24

Download citation

Publish with us

Policies and ethics

Navigation