Uptake and Use Efficiency of Major Plant Nutrients for Climate-Resilient Agriculture

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 2

Abstract

Plants require mineral nutrients, including the three most important macronutrients, nitrogen (N), phosphorus (P), and potassium (K), to maintain their growth. Sustainable agriculture has become increasingly important owing to the increasing global population and impending scarcity of resources. Large amounts of fertilizers are used on farmlands to ensure adequate food production. Specifically, the imprudent use of nonrenewable elements in large quantities increases the threat to future human food security. Therefore, increasing the utilization efficiency of elements is critical for sustainable agriculture. There are various ways to achieve this; for example, by allowing the plant to absorb as much of the element as possible from the fertilizer applied in the soil, ultimately increasing the crop yield. Alternatively, increasing the efficiency of element utilization by plants under certain fertilization conditions would be preferential, ultimately providing equal or higher yields than normal cultivars. Finally, considering that global climate change hugely impacts plant nutrient use efficiency, we must develop adaptation strategies for maintaining crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-El-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    CAS  PubMed  Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. CRC Press, New York, pp 285–313

    Google Scholar 

  • Amtmann A, Armengaud P (2009) Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr Opin Plant Biol 12:275–283

    CAS  PubMed  Google Scholar 

  • Anderson R, Bayer PE, Edwards D (2020) Climate change and the need for agricultural adaptation. Curr Opin Plant Biol 56:197–202

    PubMed  Google Scholar 

  • Angulo C, Rötter R, Trnka M, Pirttioja N, Gaiser T, Hlavinka P, Ewert F (2013) Characteristic ‘fingerprints’ of crop model responses to weather input data at different spatial resolutions. Eur J Agron 49:104–114

    Google Scholar 

  • Asghari HR, Cavagnaro TR (2011) Arbuscular mycorrhizas enhance plant interception of leached nutrients. Funct Plant Biol 38:219–226

    PubMed  Google Scholar 

  • Basak B, Biswas D (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    CAS  Google Scholar 

  • Bassu S, Brisson N, Durand JL, Boote K, Lizaso J, Jones JW, Rosenzweig C, Ruane AC, Adam M, Baron C (2014) How do various maize crop models vary in their responses to climate change factors? Glob Change Biol 20:2301–2320

    Google Scholar 

  • Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel J (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46:229–236

    CAS  PubMed  Google Scholar 

  • Bharati M, Whigham D, Voss R (1986) Soybean response to tillage and nitrogen, phosphorus, and potassium fertilization. Agron J 78:947–950

    Google Scholar 

  • Bouguyon E, Gojon A, Nacry P (2012) Nitrate sensing and signaling in plants. Semin Cell Dev Biol 23:648–654

    CAS  PubMed  Google Scholar 

  • Bradford KJ (1994) Water stress and the water relations of seed development: a critical review. Crop Sci 34:1–11

    Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    CAS  PubMed  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Change Biol 19:292–305

    Google Scholar 

  • Damon P, Osborne L, Rengel Z (2007) Canola genotypes differ in potassium efficiency during vegetative growth. Euphytica 156:387–397

    CAS  Google Scholar 

  • Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    CAS  PubMed  Google Scholar 

  • Döbereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774

    Google Scholar 

  • Dong Q, Echigo K, Raboy V, Saneoka H (2020) Seedling growth, physiological characteristics, nitrogen fixation, and root and nodule phytase and phosphatase activity of a low-phytate soybean line. Plant Physiol Biochem 149:225–232

    CAS  PubMed  Google Scholar 

  • Dong Q, Sho N, Rumi T, Akihiro U, Victor R, Hirofumi S (2022) Aberrant RNA splicing of the phytic acid synthesis gene inositol-1, 3, 4 trisphosphate 5/6-kinase in a low phytic acid soybean line. Soil Sci Plant Nutr 68(5–6):553–562

    Google Scholar 

  • Dotaniya M, Meena V (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India B Biol Sci 85:1–12

    CAS  Google Scholar 

  • Ebelhar S, Varsa E (2000) Applications in sustainable production: tillage and potassium placement effects on potassium utilization by corn and soybean. Commun Soil Sci Plant Anal 31:2367–2377

    CAS  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    CAS  Google Scholar 

  • George TS, Fransson AM, Hammond JP, White PJ (2011) Phosphorus nutrition: rhizosphere processes, plant response and adaptations. In: Else B, Astrid O, Emmanuel F (eds) Phosphorus in action. Springer, Berlin/Heidelberg, pp 245–271

    Google Scholar 

  • Giehl RF, Von Wirén N (2014) Root nutrient foraging. Plant Physiol 166:509–517

    PubMed  PubMed Central  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Google Scholar 

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    CAS  PubMed  Google Scholar 

  • Grzebisz W, Gransee A, Szczepaniak W, Diatta J (2013) The effects of potassium fertilization on water-use efficiency in crop plants. J Plant Nutr Soil Sci 176:355–374

    CAS  Google Scholar 

  • Guo** Z, **gxing C, Tirore EA (1999) Genotypic variation for potassium uptake and utilization efficiency in wheat. Nutr Cycl Agroecosyst 54:41–48

    Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    CAS  PubMed  Google Scholar 

  • Han Y, White PJ, Cheng L (2022) Mechanisms for improving phosphorus utilization efficiency in plants. Ann Bot 129:247–258

    CAS  PubMed  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    PubMed  Google Scholar 

  • Hawkesford MJ (2012) Improving nutrient use efficiency in crops. In: eLS. Wiley, Chichester

    Google Scholar 

  • Herencia JF, Ruiz JC, Morillo E, Melero S, Villaverde J, Maqueda C (2008) The effect of organic and mineral fertilization on micronutrient availability in soil. Soil Sci 173:69–80

    CAS  Google Scholar 

  • Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485

    CAS  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    CAS  PubMed  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    CAS  Google Scholar 

  • Hürlimann HC, Stadler-Waibel M, Werner TP, Freimoser FM (2007) Pho91 is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae. Mol Biol Cell 18:4438–4445

    PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Men S, Hussain S, Chen Y, Ali S, Zhang S, Zhang K, Li Y, Xu Q, Liao C (2019) Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep 9:1–12

    Google Scholar 

  • Jain A, Vasconcelos MJ, Raghothama K, Sahi SV (2007) Molecular mechanisms of plant adaptation to phosphate deficiency. Plant Breed Rev 29:359

    CAS  Google Scholar 

  • Jarvis S, Hutchings N, Brentrup F, Olesen JE, Van Der Hoek K (2011) Nitrogen flows in farming systems across Europe. In: Mark AS, Clare MH, Jan WE, Gilles B, Albert B, Peringe G, Hans VG, Bruna G (eds) The European nitrogen assessment. Cambridge University Press, Cambridge, pp 211–228

    Google Scholar 

  • Jia X, Liu P, Lynch JP (2018) Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil. J Exp Bot 69:4961–4970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kant S (2018) Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency. Semin Cell Dev Biol 74:89–96

    CAS  PubMed  Google Scholar 

  • Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62:1499–1509

    CAS  PubMed  Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    CAS  Google Scholar 

  • Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62:1455–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K (2010) Nitrate-regulated auxin transport by NRT1. 1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

    CAS  PubMed  Google Scholar 

  • Kuppusamy T, Hahne D, Ranathunge K, Lambers H, Finnegan PM (2020) Delayed greening in phosphorus-efficient Hakea prostrata (Proteaceae) is a photoprotective and nutrient-saving strategy. Funct Plant Biol 48:218–230

    Google Scholar 

  • Kwak JM, Murata Y, Baizabal-Aguirre VM, Merrill J, Wang M, Kemper A, Hawke SD, Tallman G, Schroeder JI (2001) Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis. Plant Physiol 127:473–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19:5–9

    PubMed  Google Scholar 

  • Li Y, Zhang J, Zhang X, Fan H, Gu M, Qu H, Xu G (2015) Phosphate transporter OsPht1; 8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds. Plant Sci 230:23–32

    CAS  PubMed  Google Scholar 

  • Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2. 1 represses lateral root initiation in response to nutritional cues. PNAS 102:13693–13698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Hu F, Chen X, Huang Q, Jiao J, Zhang B, Li H (2009) Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments. Appl Soil Ecol 42:166–175

    Google Scholar 

  • Liu J, Yang L, Luan M, Wang Y, Zhang C, Zhang B, Shi J, Zhao FG, Lan W, Luan S (2015) A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. PNAS 112:E6571–E6578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell DB, Martre P, Ruane AC, Wallach D, Jones JW (2016a) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Change 6:1130–1136

    Google Scholar 

  • Liu TY, Huang TK, Yang SY, Hong YT, Huang SM, Wang FN, Chiang SF, Tsai SY, Lu WC, Chiou TJ (2016b) Identification of plant vacuolar transporters mediating phosphate storage. Nat Commun 7:1–11

    Google Scholar 

  • Ma JF (2005) Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit Rev Plant Sci 24:267–281

    CAS  Google Scholar 

  • Maathuis FJ (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    CAS  PubMed  Google Scholar 

  • Madrid L (1999) Metal retention and mobility as influenced by some organic residues added to soils: a case study. In: Iskandar IK, Selim HM (eds) Fate and transport of heavy metals in the vadose zone. CRC Press, New York, pp 201–223

    Google Scholar 

  • Mantelin S, Desbrosses G, Larcher M, Tranbarger TJ, Cleyet-Marel JC, Touraine B (2006) Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 223:591–603

    CAS  PubMed  Google Scholar 

  • Mcallister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025

    CAS  PubMed  Google Scholar 

  • Meena SK, Meena VS (2017) Importance of soil microbes in nutrient use efficiency and sustainable food production. In: Vijay SM, Pankaj KM, Jaideep KB, Arunava P (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 3–23

    Google Scholar 

  • Moriconi JI, Santa-María GE (2013) A theoretical framework to study potassium utilization efficiency in response to withdrawal of potassium. J Exp Bot 64:4289–4299

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651

    CAS  PubMed  Google Scholar 

  • Noguero M, Lacombe B (2016) Transporters involved in root nitrate uptake and sensing by Arabidopsis. Front Plant Sci 7:1391

    PubMed  PubMed Central  Google Scholar 

  • O’brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9:837–856

    PubMed  Google Scholar 

  • Peiter E (2011) The plant vacuole: emitter and receiver of calcium signals. Cell Calcium 50:120–128

    CAS  PubMed  Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    CAS  PubMed  Google Scholar 

  • Pinkerton A, Simpson J (1986) Interactions of surface drying and subsurface nutrients affecting plant growth on acidic soil profiles from an old pasture. Aust J Exp Agric 26:681–689

    CAS  Google Scholar 

  • Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010) High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol 153:863–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Google Scholar 

  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2. 1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Google Scholar 

  • Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Google Scholar 

  • Sanchez PA, Shepherd KD, Soule MJ, Place FM, Buresh RJ, Izac AMN, Uzo Mokwunye A, Kwesiga FR, Ndiritu CG, Woomer PL (1997) Soil fertility replenishment in Africa: an investment in natural resource capital. Replenish Soil Fertil Afr 51:1–46

    CAS  Google Scholar 

  • Sardans J, Peñuelas J (2015) Potassium: a neglected nutrient in global change. Glob Ecol Biogeogr 24:261–275

    Google Scholar 

  • Savci S (2012) Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1:287–292

    CAS  Google Scholar 

  • Scheben A, Edwards D (2018) Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol 19:1–7

    Google Scholar 

  • Schroeder D (1978) Structure and weathering of potassium containing minerals. IPI Res Top:5–25.

    Google Scholar 

  • Secco D, Wang C, Shou H, Whelan J (2012) Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Lett 586:289–295

    CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    CAS  PubMed  Google Scholar 

  • Solomon D, Lehmann J, Fraser JA, Leach M, Amanor K, Frausin V, Kristiansen SM, Millimouno D, Fairhead J (2016) Indigenous African soil enrichment as a climate-smart sustainable agriculture alternative. Front Ecol Environ 14:71–76

    Google Scholar 

  • Song H, Yin Z, Chao M, Ning L, Zhang D, Yu D (2014) Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. Plant Cell Environ 37:462–472

    CAS  PubMed  Google Scholar 

  • Sulpice R, Ishihara H, Schlereth A, Cawthray GR, Encke B, Giavalisco P, Ivakov A, Arrivault S, Jost R, Krohn N (2014) Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant Cell Environ 37:1276–1298

    CAS  PubMed  Google Scholar 

  • Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215

    Google Scholar 

  • Tikhonovich I, Provorov N (2011) Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–168

    CAS  Google Scholar 

  • Tittonell P, Vanlauwe B, Leffelaar P, Rowe EC, Giller KE (2005) Exploring diversity in soil fertility management of smallholder farms in western Kenya: I. Heterogeneity at region and farm scale. Agric Ecosyst Environ 110:149–165

    Google Scholar 

  • Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320

    CAS  PubMed  Google Scholar 

  • Von Wittgenstein NJ, Le CH, Hawkins BJ, Ehlting J (2014) Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 14:1–17

    Google Scholar 

  • Wang X, Shen J, Liao H (2010a) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    CAS  Google Scholar 

  • Wang X, Yan X, Liao H (2010b) Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot 106:215–222

    PubMed  PubMed Central  Google Scholar 

  • Wang HY, Shen QH, Zhou JM, Wang J, Du CW, Chen XQ (2011) Plants use alternative strategies to utilize nonexchangeable potassium in minerals. Plant Soil 343:209–220

    CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman SD, Shou H (2015) Rice SPX-major facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiol 169:2822–2831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen YF, Wu WH (2021) Potassium and phosphorus transport and signaling in plants. J Integr Plant Biol 63:34–52

    CAS  PubMed  Google Scholar 

  • Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns F (2002) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247

    Google Scholar 

  • Whitbread A, Blair G, Konboon Y, Lefroy R, Naklang K (2003) Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat crop** systems in Thailand and Australia. Agric Ecosyst Environ 100:251–263

    Google Scholar 

  • White PJ (2013) Improving potassium acquisition and utilisation by crop plants. J Plant Nutr Soil Sci 176:305–316

    CAS  Google Scholar 

  • Wissuwa M, Kondo K, Fukuda T, Mori A, Rose MT, Pariasca-Tanaka J, Kretzschmar T, Haefele SM, Rose TJ (2015) Unmasking novel loci for internal phosphorus utilization efficiency in rice germplasm through genome-wide association analysis. PLoS One 10:e0124215

    PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhao H, Wan R, Liu Y, Xu Z, Tian W, Ruan W, Wang F, Deng M, Wang J (2019) Identification of vacuolar phosphate efflux transporters in land plants. Nat Plant 5:84–94

    CAS  Google Scholar 

  • Yokota A, Takahara K, Akashi K (2006) Water stress. In: Rao K, Raghavendra A, Reddy K (eds) Physiology and molecular biology of stress tolerance. Springer, Dordrecht, pp 15–39

    Google Scholar 

  • Zak D, Kronvang B, Carstensen MV, Hoffmann CC, Kjeldgaard A, Larsen SE, Audet J, Egemose S, Jorgensen CA, Feuerbach P (2018) Nitrogen and phosphorus removal from agricultural runoff in integrated buffer zones. Environ Sci Technol 52:6508–6517

    CAS  PubMed  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51–59

    CAS  PubMed  Google Scholar 

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P (2017) Temperature increase reduces global yields of major crops in four independent estimates. PNAS 114:9326–9331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture–status and perspectives. J Plant Physiol 171:656–669

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qin, D., Tominaga, R., Saneoka, H. (2023). Uptake and Use Efficiency of Major Plant Nutrients for Climate-Resilient Agriculture. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-37428-9_2

Download citation

Publish with us

Policies and ethics

Navigation