Mechanism and Approaches to Enhance Salt Stress Tolerance in Crop Plants

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 2

Abstract

Plants face different stresses in the environment, and among these environmental stresses, salinity is more devastating stress due to its negative impacts on crop plants. Salinity is stress that affects growth, physiology, and nutrient uptake in plants, which ultimately leads to food scarcity. Soluble salts decrease the water potential, resulting in an aqueous medium unavailable for the plant retarding plant development. Increased imbibition of generated seeds changes due to the decreased solute potential of the growing media, which causes ion toxicity. Increased concentration of reactive oxygen species (ROS) damages the lipid, protein, and nucleic acid; ultimately disrupts the cellular metabolism; and alters the enzymatic activities. The adverse effects due to the increased salinity levels can be mitigated via genetic diversity, osmoprotectant/osmolyte accumulation, hormonal regulation, and antioxidant mechanisms. This chapter elaborates on the impacts of salinity stress on morpho-physiological attributes of the plant and also describes different mechanisms and perspectives that can mitigate salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbaspour H, Pour FS, Abdel-Wahhab MA (2021) Arbuscular mycorrhizal symbiosis regulates the physiological responses, ion distribution and relevant gene expression to trigger salt stress tolerance in pistachio. Physiol Mol Biol Plants 27(8):1765–1778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelaal K, Alsubeie MS, Hafez Y, Emeran A, Moghanm F, Okasha S, Omara R, Basahi MA, Darwish DBE, Ibrahim M (2022) Physiological and biochemical changes in vegetable and field crops under drought, salinity and weeds stresses: control strategies and management. Agriculture 12(12):2084

    CAS  Google Scholar 

  • Abideen Z, Koyro HW, Hussain T, Rasheed A, Alwahibi MS, Elshikh MS, Hussain MI, Zulfiqar F, Mansoor S, Abbas Z (2022) Biomass production and predicted ethanol yield are linked with optimum photosynthesis in phragmites karka under salinity and drought conditions. Plan Theory 11(13):1657

    CAS  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1:309–340

    Google Scholar 

  • Aslam R, Bostan N, Nabgha-e-Amen MM, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plant Res 5(33):7108–7118

    CAS  Google Scholar 

  • Ayuso-Calles M, Flores-Félix JD, Rivas R (2021) Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy 11(9):1759

    CAS  Google Scholar 

  • Bagues M, Zaghdoud C, Hafsi C, Boussora F, Triki T, Nagaz K (2021) Combined effect of deficit irrigation with saline water affects gas exchange, phytochemical profiles, antioxidant activities and grain yield of barley landraces “Ardhaoui” at heading stage. Plant Biosyst 155(3):436–446

    Google Scholar 

  • Baha N (2022) Comparative effects of osmotic and salt stresses on germination and seedling growth of alfalfa: physiological responses involved. Agric Conspec Sci 87(4):311–319

    Google Scholar 

  • Bakhshandeh E, Bradford KJ, Pirdashti H, Vahabinia F, Abdellaoui R (2020) A new halothermal time model describes seed germination responses to salinity across both sub-and supra-optimal temperatures. Acta Physiol Plant 42:1–15

    Google Scholar 

  • Basu S, Kumar A, Benazir I, Kumar G (2021) Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. Physiol Plant 171(4):502–519

    CAS  PubMed  Google Scholar 

  • Bhandari K, Nayyar H (2014) Low temperature stress in plants: an overview of roles of cryoprotectants in defense. In: Physiological mechanisms and adaptation strategies in plants under changing environment, vol 1. Springer, New York, pp 193–265

    Google Scholar 

  • Bhatt R, Kaur R, Ghosh A (2019) Strategies to practice climate-smart agriculture to improve the livelihoods under the rice-wheat crop** system in South Asia. In: Sustainable management of soil and environment. Springer, Singapore, pp 29–71

    Google Scholar 

  • Bhattacharya A (2022) Effect of low-temperature stress on germination, growth, and phenology of plants: a review. In: Physiological processes in plants under low temperature stress. Springer, Singapore, pp 1–106

    Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40(1):4–10

    CAS  PubMed  Google Scholar 

  • Bomle DV, Kiran A, Kumar JK, Nagaraj LS, Pradeep CK, Ansari MA, Alghamdi S, Kabrah A, Assaggaf H, Dablool AS (2021) Plants saline environment in perception with rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Int J Mol Sci 22(21):11461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257

    CAS  PubMed  Google Scholar 

  • Bukhari SAH, Peerzada AM, Javed MH, Dawood M, Hussain N, Ahmad S (2019) Growth and development dynamics in agronomic crops under environmental stress. In: Agronomic crops: volume 1: production technologies. Springer, Singapore, pp 83–114

    Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):306

    CAS  Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. Abio Stress Plant Mech Adap 1:21–38

    Google Scholar 

  • Carter E (2019) Seed and seedling dynamics of annual medic pastures in South Australia. In: Proceedings of the XIV international grassland congress. CRC Press, pp 447–450

    Google Scholar 

  • Chen L, Liu L, Lu B, Ma T, Jiang D, Li J, Zhang K, Sun H, Zhang Y, Bai Z (2020) Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS One 15(1):e0228241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chitnis VR, Gao F, Yao Z, Jordan MC, Park S, Ayele BT (2014) After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid. PLoS One 9(1):e87543

    PubMed  PubMed Central  Google Scholar 

  • Conde A, Chaves MM, Gerós H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52(9):1583–1602

    CAS  PubMed  Google Scholar 

  • Dhiman P, Rajora N, Bhardwaj S, Sudhakaran SS, Kumar A, Raturi G, Chakraborty K, Gupta OP, Devanna B, Tripathi DK (2021) Fascinating role of silicon to combat salinity stress in plants: an updated overview. Plant Physiol Biochem 162:110–123

    CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PV (2013) Effects of salinity on ion transport, water relations and oxidative damage. In: Ecophysiology and responses of plants under salt stress. Springer, New York, pp 89–114

    Google Scholar 

  • Dourado PRM, de Souza ER, Santos MA, Lins CMT, Monteiro DR, Paulino MKSS, Schaffer B (2022) Stomatal regulation and osmotic adjustment in sorghum in response to salinity. Agriculture 12(5):658

    CAS  Google Scholar 

  • El Rasafi T, Oukarroum A, Haddioui A, Song H, Kwon EE, Bolan N, Tack FM, Sebastian A, Prasad M, Rinklebe J (2022) Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. Crit Rev Environ Sci Technol 52(5):675–726

    Google Scholar 

  • El-Hendawy S, Elshafei A, Al-Suhaibani N, Alotabi M, Hassan W, Dewir YH, Abdella K (2019) Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. J Plant Interact 14(1):151–163

    CAS  Google Scholar 

  • Farghaly FA, Radi AA, Abdel-Wahab DA, Hamada AM (2015) Comparative study of alkaline and saline stresses on two oil-producing plants. Egypt J Exp Biol (Botany) 10(1):13–13

    Google Scholar 

  • Farid M, Anshori MF, Musa Y, Iswoyo H, Sakinah AI (2021) Interaction of rice salinity screening in germination and seedling phase through selection index based on principal components. Chil J Agric Res 8(3):368–377

    Google Scholar 

  • Farouk S (2011) Osmotic adjustment in wheat flag leaf in relation to flag leaf area and grain yield per plant. J Stress Physiol Biochem 7(2):117–138

    Google Scholar 

  • Fell JB, Fischer JP, Baer BR, Blake JF, Bouhana K, Briere DM, Brown KD, Burgess LE, Burns AC, Burkard MR (2020) Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer. J Med Chem 63(13):6679–6693

    CAS  PubMed  Google Scholar 

  • Feng Y-N, Cui J-Q, Zhou T, Liu Y, Yue C-P, Huang J-Y, Hua Y-P (2020) Comprehensive dissection into morpho-physiologic responses, ionomic homeostasis, and transcriptomic profiling reveals the systematic resistance of allotetraploid rapeseed to salinity. BMC Plant Biol 20(1):1–22

    Google Scholar 

  • Ferreira JF, Sandhu D, Liu X, Halvorson JJ (2018) Spinach (Spinacea oleracea L.) response to salinity: nutritional value, physiological parameters, antioxidant capacity, and gene expression. Agriculture 8(10):163

    CAS  Google Scholar 

  • Freitas VS, de Souza MR, Costa JH, de Oliveira DF, de Oliveira PS, de Castro ME, Freire RS, Prisco JT, Gomes-Filho E (2018) Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ Exp Bot 145:75–86

    CAS  Google Scholar 

  • Gallie DR (2013) L-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica 2013:795964

    PubMed  PubMed Central  Google Scholar 

  • Gamalero E, Glick BR (2022) Recent advances in bacterial amelioration of plant drought and salt stress. Biology 11(3):437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh U, Islam M, Siddiqui M, Cao X, Khan M (2022) Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol 24(2):227–239

    CAS  PubMed  Google Scholar 

  • Giersch GE, Charkoudian N, Stearns RL, Casa DJ (2020) Fluid balance and hydration considerations for women: review and future directions. Sport Med 50:253–261

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  PubMed  Google Scholar 

  • Goro MG, Sinha VB (2020) Seed germination responses for varying KNO3 and NaNO3 stress in Trifolium alexandrinum. L cultivars. Biocatal Agric Biotechnol 25:101618

    Google Scholar 

  • Guerrero-Rubio MA, Escribano J, García-Carmona F, Gandía-Herrero F (2020) Light emission in betalains: from fluorescent flowers to biotechnological applications. Trends Plant Sci 25(2):159–175

    CAS  PubMed  Google Scholar 

  • Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M (2022) Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture. Int J Mol Sci 23(7):3741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hailu B, Mehari H (2021) Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: a review. J Nat Sci Res 12(3):1–10

    Google Scholar 

  • Hao S, Wang Y, Yan Y, Liu Y, Wang J, Chen S (2021) A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 7(6):132

    Google Scholar 

  • Hill R, Li C, Jones A, Gunn J, Frade P (2010) Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs 29:869–880

    Google Scholar 

  • Hossain MT, Islam T (2022) Amelioration of salinity stress by bacillus species as promoters of plant growth in saline soil. In: Bacilli in agrobiotechnology. Springer, pp 199–208

    Google Scholar 

  • Hosseinifard M, Stefaniak S, Ghorbani Javid M, Soltani E, Wojtyla Ł, Garnczarska M (2022) Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. Int J Mol Sci 23(9):5186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Farooq MA, Hannan F, Chen W, Ayyaz A, Zhang K, Zhou W, Islam F (2022) Endogenous nitric oxide contributes to chloride and sulphate salinity tolerance by modulation of ion transporter expression and reestablishment of redox balance in Brassica napus cultivars. Environ Exp Bot 194:104734

    CAS  Google Scholar 

  • Hussain Wani S, Brajendra Singh N, Haribhushan A, Iqbal Mir J (2013) Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr Genomics 14(3):157–165

    Google Scholar 

  • Ighodaro O, Akinloye O (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293

    Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6(2):275–286

    CAS  PubMed  Google Scholar 

  • Ji X, Cheng J, Gong D, Zhao X, Qi Y, Su Y, Ma W (2018) The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Sci Total Environ 633:593–599

    CAS  PubMed  Google Scholar 

  • Johal N, Batish D, Pal A, Chandel S, Pal M (2022) Investigating the effects of 2850 MHz electromagnetic field radiations on the growth, germination and Antioxidative defense system of chickpea (Cicer arietinum L.) seedlings. Russ J Plant Physiol 69(6):1–8

    Google Scholar 

  • Johnson R, Puthur JT (2021) Seed priming as a cost effective technique for develo** plants with cross tolerance to salinity stress. Plant Physiol Biochem 162:247–257

    CAS  PubMed  Google Scholar 

  • Johnson EC, Dammer EB, Duong DM, ** L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC (2020) Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 26(5):769–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi S, Nath J, Singh AK, Pareek A, Joshi R (2022) Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiol Plant 174(3):e13702

    CAS  PubMed  Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Eng Appl Sci 2(1):7–10

    CAS  Google Scholar 

  • Junpen A, Pansuk J, Kamnoet O, Cheewaphongphan P, Garivait S (2018) Emission of air pollutants from rice residue open burning in Thailand, 2018. Atmosphere 9(11):449

    CAS  Google Scholar 

  • Kataria S, Anand A, Raipuria RK, Kumar S, Jain M, Watts A, Brestic M (2022) Magnetopriming actuates nitric oxide synthesis to regulate phytohormones for improving germination of soybean seeds under salt stress. Cells 11(14):2174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Hussain SJ, Kaur G, Poor P, Alamri S, Siddiqui MH, Khan MIR (2022) Salicylic acid improves nitrogen fixation, growth, yield and antioxidant defence mechanisms in chickpea genotypes under salt stress. J Plant Growth Regul 41(5):2034–2047

    CAS  Google Scholar 

  • Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, Ahmad K, Henikoff S (2019) CUT and tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10(1):1930

    PubMed  PubMed Central  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trend Plant Sci 20(4):219–229

    CAS  Google Scholar 

  • Khan MS, Ahmad D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol 18(4):257–266

    Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M (2020) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232

    CAS  PubMed  Google Scholar 

  • Khan MN, Li Y, Fu C, Hu J, Chen L, Yan J, Khan Z, Wu H, Li Z (2022) CeO2 nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance. Global Chall 6(7):2200025

    Google Scholar 

  • Kohli SK, Kaur H, Khanna K, Handa N, Bhardwaj R, Rinklebe J, Ahmad P (2022) Boron in plants: uptake, deficiency and biological potential. Plant Growth Regul:1–16. https://doi.org/10.1007/s10725-022-00844-7

  • Konuşkan Ö, Gözübenli H, Atiş İ, Atak M (2017) Effects of salinity stress on emergence and seedling growth parameters of some maize genotypes (Zea mays L.). Turk J Agric Food Sci Technol 5(12):1668–1672

    Google Scholar 

  • Koza NA, Adedayo AA, Babalola OO, Kappo AP (2022) Microorganisms in plant growth and development: roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 10(8):1528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreslavski VD, Khudyakova AY, Kosobryukhov AA, Balakhnina TI, Shirshikova GN, Alharby HF, Allakhverdiev SI (2023) The effect of short-term heating on photosynthetic activity, pigment content, and pro−/antioxidant balance of a. thaliana Phytochrome mutants. Plan Theory 12(4):867

    CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2013) Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Sci 207:45–56

    CAS  PubMed  Google Scholar 

  • Lennicke C, Cochemé HM (2021) Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 81(18):3691–3707

    CAS  PubMed  Google Scholar 

  • Liew LN, Shi J, Li Y (2011) Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresour Technol 102(19):8828–8834

    CAS  PubMed  Google Scholar 

  • Liu J, Hu T, Fang L, Peng X, Liu F (2019) CO2 elevation modulates the response of leaf gas exchange to progressive soil drying in tomato plants. Agric For Meteorol 268:181–188

    Google Scholar 

  • Lokhande VH, Suprasanna P (2012) Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Environmental adaptations and stress tolerance of plants in the era of climate change, pp 29–56. https://doi.org/10.1007/978-1-4614-0815-4_2

    Chapter  Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 104(1):41–49

    CAS  Google Scholar 

  • Lombardi T, Bertacchi A, Pistelli L, Pardossi A, Pecchia S, Toffanin A, Sanmartin C (2022) Biological and agronomic traits of the main halophytes widespread in the Mediterranean region as potential new vegetable crops. Horticulturae 8(3):195

    Google Scholar 

  • Mahpara S, Zainab A, Ullah R, Kausar S, Bilal M, Latif MI, Arif M, Akhtar I, Al-Hashimi A, Elshikh MS (2022) The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat (Triticum aestivum L.) genotypes. PLoS One 17(2):e0262937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    CAS  PubMed  Google Scholar 

  • Mihoub A, Amin AE-EAZ, Naeem A, Bouhoun MD (2019) Improvement in phosphorus nutrition of wheat plants grown in a calcareous sandy soil by incorporating chemical phosphorus fertilizer with some selected organic substances. Acta Agric Slov 113(2):263–272

    CAS  Google Scholar 

  • Minorsky PV (2019) The functions of foliar nyctinasty: a review and hypothesis. Biol Rev 94(1):216–229

    PubMed  Google Scholar 

  • Misbah N, Akram I, Saleem MA (2022) Influences induced by salinity stress on germination, growth and proline contents of maize (Zea mays L.). J Agric Food Environ Anim Sci 3(1):15–26

    Google Scholar 

  • Morris JT (2007) Estimating net primary production of salt marsh macrophytes. In: Principles and standards for measuring primary production, pp 106–119. https://doi.org/10.1093/acprof:oso/9780195168662.003.0007

    Chapter  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82:371–406

    Google Scholar 

  • Mushtaq Z, Faizan S, Gulzar B (2020) Salt stress, its impacts on plants and the strategies plants are employing against it: a review. J Appl Biol Biotechnol 8(3):81–91

    CAS  Google Scholar 

  • Mustafa G, Akhtar MS, Abdullah R (2019) Global concern for salinity on various agro-ecosystems. In: Salt stress, microbes, and plant interactions: causes and solution, vol 1, pp 1–19. https://doi.org/10.1007/978-981-13-8801-9_1

    Chapter  Google Scholar 

  • Nanduri KR, Hirich A, Salehi M, Saadat S, Jacobsen SE (2019) Quinoa: a new crop for harsh environments. In: Sabkha Ecosystems: volume VI: Asia/Pacific. Springer, Cham, pp 301–333

    Google Scholar 

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9(34):5475–5480

    CAS  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169(6):596–604

    CAS  PubMed  Google Scholar 

  • Nowicka B (2022) Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ Sci Pollut Res 29(12):16860–16911

    CAS  Google Scholar 

  • O’Flanagan CH, Campbell KR, Zhang AW, Kabeer F, Lim JL, Biele J, Eirew P, Lai D, McPherson A, Kong E (2019) Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol 20(1):1–13

    Google Scholar 

  • Omari Alzahrani F (2021) Metabolic engineering of osmoprotectants to elucidate the mechanism (s) of salt stress tolerance in crop plants. Planta 253:1–17

    Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to abiotic stresses. Plant Genome 10(9):229–272

    Google Scholar 

  • Ondrasek G, Rengel Z, Veres S (2011) Soil salinisation and salt stress in crop production. In: Abiotic stress in plants—mechanisms and adaptations. IntechOpen, London, pp 171–190

    Google Scholar 

  • Orsini F, D’Urzo MP, Inan G, Serra S, Oh D-H, Mickelbart MV, Consiglio F, Li X, Jeong JC, Yun D-J (2010) A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. J Exp Bot 61(13):3787–3798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Bobea A, Ault TR, Carrillo CM, Chambers RG, Lobell DB (2021) Anthropogenic climate change has slowed global agricultural productivity growth. Nat Clim Chang 11(4):306–312

    Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202(1):35–49

    PubMed  Google Scholar 

  • Pavlović I, Mlinarić S, Tarkowská D, Oklestkova J, Novák O, Lepeduš H, Bok VV, Brkanac SR, Strnad M, Salopek-Sondi B (2019) Early Brassica crops responses to salinity stress: a comparative analysis between Chinese cabbage, white cabbage, and kale. Front Plant Sci 10:450

    PubMed  PubMed Central  Google Scholar 

  • Pessarakli M, Haghighi M, Sheibanirad A (2015) Plant responses under environmental stress conditions. Adv Plants Agric Res 2(6):73

    Google Scholar 

  • Rasool S, Hameed A, Azooz M, Siddiqi T, Ahmad P (2013) Salt stress: causes, types and responses of plants. In: Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1–24

    Google Scholar 

  • Ravisankar P, Reddy AA, Nagalakshmi B, Koushik OS, Kumar BV, Anvith PS (2015) The comprehensive review on fat soluble vitamins. IOSR J Pharm 5(11):12–28

    CAS  Google Scholar 

  • Rawat N, Singla-Pareek SL, Pareek A (2021) Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol Plant 171(4):653–676

    CAS  PubMed  Google Scholar 

  • Redondo-Gómez S, Mesa-Marín J, Pérez-Romero JA, López-Jurado J, García-López JV, Mariscal V, Molina-Heredia FP, Pajuelo E, Rodríguez-Llorente ID, Flowers TJ (2021) Consortia of Plant-Growth-Promoting Rhizobacteria isolated from halophytes improve response of eight crops to soil salinization and climate change conditions. Agronomy 11(8):1609

    Google Scholar 

  • Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, Bhati KK, Kim ST, Gupta R (2020) Ethylene: a master regulator of salinity stress tolerance in plants. Biomol Ther 10(6):959

    CAS  Google Scholar 

  • Ruiz-Sola MÁ, Arbona V, Gomez-Cadenas A, Rodriguez-Concepcion M, Rodriguez-Villalon A (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis. PLoS One 9(3):e90765

    PubMed  PubMed Central  Google Scholar 

  • Sarabi B, Bolandnazar S, Ghaderi N, Ghashghaie J (2017) Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiol Biochem 119:294–311

    CAS  PubMed  Google Scholar 

  • Sarkar J, Chakraborty U, Chakraborty B (2021) High-temperature resilience in Bacillus safensis primed wheat plants: a study of dynamic response associated with modulation of antioxidant machinery, differential expression of HSPs and osmolyte biosynthesis. Environ Exp Bot 182:104315

    CAS  Google Scholar 

  • Schneider P, Asch F (2020) Rice production and food security in Asian Mega deltas—a review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. J Agron Crop Sci 206(4):491–503

    Google Scholar 

  • Sforza E, Pastore M, Franke SM, Barbera E (2020) Modeling the oxygen inhibition in microalgae: an experimental approach based on photorespirometry. New Biotechnol 59:26–32

    CAS  Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151(3):257–279

    CAS  PubMed  Google Scholar 

  • Shackira A, Puthur JT (2017) Enhanced phytostabilization of cadmium by a halophyte—Acanthus ilicifolius L. Int J Phytoremediation 19(4):319–326

    CAS  PubMed  Google Scholar 

  • Shah LR, Husain M, Raja A (2017) Abiotic stress mechanism in herbaceous crops: an overview. J Pharm Innov 6(11): 339–346

    Google Scholar 

  • Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y (2021) Targeting salt stress co** mechanisms for stress tolerance in Brassica: a research perspective. Plant Physiol Biochem 158:53–64

    CAS  PubMed  Google Scholar 

  • Shahzad B, Yun P, Shabala L, Zhou M, Sellamuthu G, Venkataraman G, Chen Z-H, Shabala S, Wu H (2022) Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species. Funct Plant Biol 49(4):351–364

    CAS  PubMed  Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K (2020) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39:509–531

    CAS  Google Scholar 

  • Shin J, Song M-H, Oh J-W, Keum Y-S, Saini RK (2020) Pro-oxidant actions of carotenoids in triggering apoptosis of cancer cells: a review of emerging evidence. Antioxidants 9(6):532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shu S, Yuan Y, Chen J, Sun J, Zhang W, Tang Y, Zhong M, Guo S (2015) The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci Rep 5(1):1–16

    Google Scholar 

  • Singh M, Kumar J, Singh V, Prasad S (2014) Proline and salinity tolerance in plants. Biochem Pharmacol 3(6):e170

    Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14:407–426

    CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song KE, Hwang HR, Konvalina P, Jun WJ, Jung JW, Shim S (2023) Hydrogen peroxide ameliorates the adversities of drought stress during germination and seedling growth in sorghum (Sorghum bicolor L.). Agronomy 13(2):330

    CAS  Google Scholar 

  • Streyczek J, Apweiler M, Sun L, Fiebich BL (2022) Turmeric extract (Curcuma longa) mediates anti-oxidative effects by reduction of nitric oxide, iNOS protein-, and mRNA-synthesis in BV2 microglial cells. Molecules 27(3):784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Syed A, Sarwar G, Shah SH, Muhammad S (2021) Soil salinity research in 21st century in Pakistan: its impact on availability of plant nutrients, growth and yield of crops. Commun Soil Sci Plant Anal 52(3):183–200

    CAS  Google Scholar 

  • Thorat B, Bagkar T, Raut S (2018) Responses of rice under salinity stress: a review. IJCS 6(4):1441–1447

    Google Scholar 

  • Toderich KN, Mamadrahimov AA, Khaitov BB, Karimov AA, Soliev AA, Nanduri KR, Shuyskaya EV (2020) Differential impact of salinity stress on seeds minerals, storage proteins, fatty acids, and squalene composition of new quinoa genotype, grown in hyper-arid desert environments. Front Plant Sci 11:607102

    PubMed  PubMed Central  Google Scholar 

  • Toh S, Takata N, Ando E, Toda Y, Wang Y, Hayashi Y, Mitsuda N, Nagano S, Taniguchi T, Kinoshita T (2021) Overexpression of plasma membrane H+-ATPase in guard cells enhances light-induced stomatal opening, photosynthesis, and plant growth in hybrid aspen. Front Plant Sci 12:766037

    PubMed  PubMed Central  Google Scholar 

  • Uçarlı C (2020) Effects of salinity on seed germination and early seedling stage. In: Abiotic Stress in Plants, vol 211. IntechOpen, pp 211–231. https://doi.org/10.5772/intechopen.91549

  • Velázquez-Márquez S, Conde-Martínez V, Trejo C, Delgado-Alvarado A, Carballo A, Suárez R, Mascorro J, Trujillo A (2015) Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L. Plant Physiol Biochem 96:29–37

    PubMed  Google Scholar 

  • **ong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9(3):e92913

    PubMed  PubMed Central  Google Scholar 

  • Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M (2020) Effect of abiotic stress on crops. Sustain Crop Prod 3. https://doi.org/10.5772/intechopen.88434

  • Yamashita K, Shiozawa A, Banno S, Fukumori F, Ichiishi A, Kimura M, Fujimura M (2007) Involvement of OS-2 MAP kinase in regulation of the large-subunit catalases CAT-1 and CAT-3 in Neurospora crassa. Genes Genet 82(4):301–310

    CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208(15):2819–2830

    CAS  PubMed  Google Scholar 

  • Yang M, Fu Y, Zhao R, Koorem K, Li B, Siemann E, Yang Q (2022) The effects of light availability on plant-soil interactions and salinity tolerance of invasive tree species, Triadica sebifera. For Ecol Manag 506:119964

    Google Scholar 

  • Zemni N, Slama F, Bouksila F, Bouhlila R (2022) Simulating and monitoring water flow, salinity distribution and yield production under buried diffuser irrigation for date palm tree in Saharan Jemna oasis (North Africa). Agric Ecosyst Environ 325:107772

    CAS  Google Scholar 

  • Zhang S, Vijayavenkataraman S, Lu WF, Fuh JY (2019) A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. J Biomed Mater Res B Appl Biomater 107(5):1329–1351

    CAS  PubMed  Google Scholar 

  • Zhonghua T, Yanju L, **aorui G, Yuangang Z (2011) The combined effects of salinity and nitrogen forms on Catharanthus roseus: the role of internal ammonium and free amino acids during salt stress. J Plant Nutr Soil Sci 174(1):135–144

    Google Scholar 

  • Zhu X, **e S, Tang K, Kalia RK, Liu N, Ma J, Bressan RA, Zhu J-K (2021) Non-CG DNA methylation-deficiency mutations enhance mutagenesis rates during salt adaptation in cultured Arabidopsis cells. Stress Biol 1(1):1–12

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athar Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asghar, S. et al. (2023). Mechanism and Approaches to Enhance Salt Stress Tolerance in Crop Plants. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-37428-9_18

Download citation

Publish with us

Policies and ethics

Navigation