Climate Change and Global Crop Production

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 1

Abstract

Climate has a substantial impact on human health, livelihood, food, and infrastructure. However, rapid shifts in climatic conditions threaten the survival of all living creatures. The current abnormalities in precipitation and temperature are leading to nonprofitable agricultural production, food insecurity, and depletion of natural genetic resources. The changing trends towards diversified diets have posed greater challenges for producers in meeting the consumers’ demands, necessitating a consistent and reliable food supply. Unfortunately, the current scenario of climatic variation has made it hard to put enough food on the table. Because of flooding, droughts, and salinity stress, a large number of staple crops and their by-products get wasted. Similarly, low production of cash crops also lowers the import–export values and affects the national economy. A few preventive measures could be taken to address the challenges of climatic irregularities. Examples include the use of elite genotypes, changing harvest dates, sowing either late or early, and cultivating new crops rather than just the usual ones. It is compulsory to test, validate, and devise a climate-resilient crop** system. In contrast, growers must participate in different activities to determine adoption-related barriers and generate alternative options. These approaches will minimize insect pest infestation, prevent diseases, improve soil fertility, increase water use efficiency, and, above all, help in develo** defense mechanisms against climate change. The yields of major crops have been declining, so efforts have been put into converting marginal lands into agricultural lands to compensate for this. However, this practice ultimately degrades the land and threatens the existence of biodiversity in both domestic and wild species. This could affect future attempts to address climate risk. Recently, efforts have been made to improve the operating system at farms by modifying the percentage of pesticide and fertilizer usage, their method of application (foliar/ground), the introduction of the sprinkler irrigation technique, and the use of certified seeds to improve both plant growth and soil fertility. By adhering to these practices, farmers are ho** to be able to deal with climatic variations in a significantly more effective manner. In addition, decision-makers establishing appropriate policies and interventions for climate-smart agricultural production approaches and methods must carefully examine the macroeconomic, social, and ecological interventions. At the same time, policies that encourage unsustainable production and aggravate environmental issues must also be abolished. Moreover, more funding for research, notably action research, is required to deal with forthcoming climate-related threats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelrahman M, El-Sayed M, Sato S, Hirakawa H, Ito SI, Tanaka K, Mine Y, Sugiyama N, Suzuki M, Yamauchi N (2017) RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosumA. cepa monosomic addition lines. PLoS One 12:e0181784

    Google Scholar 

  • Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ, Tran LSP (2018a) Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol Biochem 131:31–36

    PubMed  Google Scholar 

  • Abdelrahman M, Jogaiah S, Burritt DJ, Tran LSP (2018b) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ 41:1972–1983

    Google Scholar 

  • Abid M, Schilling J, Scheffran J, Zulfiqar F (2016a) Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci Total Environ 547:447–460

    PubMed  Google Scholar 

  • Abid M, Schneider UA, Scheffran J (2016b) Adaptation to climate change and its impacts on food productivity and crop income: perspectives of farmers in rural Pakistan. J Rural Stud 47:254–266

    Google Scholar 

  • Abid M, Scheffran J, Schneider UA, Elahi E (2019) Farmer perceptions of climate change, observed trends and adaptation of agriculture in Pakistan. Environ Manag 63:110–123

    Google Scholar 

  • Adhikari P, Araya H, Aruna G, Balamatti A, Banerjee S, Baskaran P, Barah BC, Behera D, Berhe T, Boruah P, Dhar S, Edwards S, Fulford M, Gujja B, Ibrahim H, Kabir H, Kassam A, Khadka R, Koma Y, Verma A (2018) System of crop intensification for more productive, resource-conserving, climate-resilient, and sustainable agriculture: experience with diverse crops in varying agroecologies. Int J Agric Sustain 16:1–28

    Google Scholar 

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    PubMed  Google Scholar 

  • Agarwal A, Durairajanayagam D, Tatagari S, Bashiri A (2016) Bibliometrics: tracking research impact by selecting the appropriate metrics. Asian J Androl 18:296

    PubMed  PubMed Central  Google Scholar 

  • Ahmad D, Afzal M (2020) Climate change adaptation impact on cash crop productivity and income in Punjab province of Pakistan. Environ Sci Pollut Res 27:30767–30777

    Google Scholar 

  • Ahmad Z, Anjum S, Skalicky M, Waraich EA, Tariq RMS, Ayub MA, El Sabagh A (2021a) Selenium alleviates the adverse effect of drought in oilseed crops camelina (Camelina sativa L.) and canola (Brassica napus L.). Molecules 26(6):1699

    PubMed  PubMed Central  Google Scholar 

  • Ahmad Z, Waraich EA, Tariq RMS, Iqbal MA, Ali S, Soufan W, El Sabagh A (2021b) Foliar applied salicylic acid ameliorates water and salt stress by improving gas exchange and photosynthetic pigments in wheat. Pak J Bot 53(5):1553–1560

    Google Scholar 

  • Ahmad Z, Warraich EA, Iqbal MA, Barutcular C, Alharby H, Bamagoos A, El Sabagh A (2021c) Foliage applied silicon ameliorates drought stress through physio-morphological traits, osmoprotectants and antioxidant metabolism of camelina (Camelina sativa L.) genotypes. Acta Sci Pol Hort Cult 20(4):43–57

    Google Scholar 

  • Ahmad Z, Barutçular C, Zia Ur Rehman M, Sabir Tariq RM, Afzal M, Waraich EA, Nawaz H (2022) Pod shattering in canola reduced by mitigating drought stress through silicon application and molecular approaches-a review. J Plant Nutr 46(1):101–128

    Google Scholar 

  • Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194

    Google Scholar 

  • Ali MF, Rose S (2021) Farmers’ perception and adaptations to climate change: Findings from three agro-ecological zones of Punjab, Pakistan. Environ Sci Pollut Res 28:14844–14853

    Google Scholar 

  • Ali MF, Ashfaq M, Hassan S, Ullah R (2020) Assessing indigenous knowledge through farmers’ perception and adaptation to climate change in Pakistan. Pol J Environ Stud 29:525–532

    Google Scholar 

  • Almaraz JJ, Mabood F, Zhou XM, Gregorich EG, Smith DL (2008) Climate change, weather variability and corn yield at a higher latitude locale: Southwestern Quebec. Clim Change 88:187–197

    Google Scholar 

  • Amanullah MJH, Nawab K, Ali A (2007) Response of specifc leaf area (SLA), leaf area index (LAI) and leaf area ratio (LAR) of maize (Zea mays L.) to plant density, rate and timing of nitrogen application. World Appl Sci J 2(3):235–243

    Google Scholar 

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: An overview. Physiol Mol Biol Plants 19:307–321

    PubMed  PubMed Central  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agric Syst 167:213–222

    Google Scholar 

  • Amir S, Saqib Z, Khan MI, Ali A, Khan MA, Bokhari SA, Ul-Haq Z (2020) Determinants of farmers’ adaptation to climate change in rain-fed agriculture of Pakistan. Arab J Geosci 13:1–19

    Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenoty**: the new crop breeding frontier. Trends Plant Sci 19:52–61

    PubMed  Google Scholar 

  • Arora M, Goel NK, Singh P (2005) Evaluation of temperature trends over India/ Evaluation de tendances de temperature en Inde. Hydrol Sci J 50:81–93

    Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    PubMed  Google Scholar 

  • Ashraf M, Arshad A, Patel PM, Khan A, Qamar H, Siti-Sundari R, Ghani MU, Amin A, Babar JR (2021) Quantifying climate-induced drought risk to livelihood and mitigation actions in Balochistan. Nat Hazards 109:2127–2121

    Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Zhu Y (2014) Rising temperatures reduce global wheat production. Nat Clim Change 5:143–147

    Google Scholar 

  • Awais M, Wajid A, Saleem MF, Nasim W, Ahmad A, Raza MA, Bashir MU, Mubeen M, Hammad HM, Ur Rahman HM, Saeed U, Arshad NM, Hussain J (2018) Potential impacts of climate change and adaptation strategies for sunflower in Pakistan. Environ Sci Pollut Res 25:13719–13730

    Google Scholar 

  • Bacha MS, Nafees M, Adnan S (2018) Farmers’ perceptions about climate change vulnerabilities and their adaptation measures in District Swat. Sarhad J Agric 34:311–326

    Google Scholar 

  • Badu-Apraku B, Yallou C (2009) Registration of Striga-resistant and drought-tolerant tropical early maize populations TZE-W Pop DT STR C 4 and TZE-Y Pop DT STR C 4. J Plant Regist 3:86–90

    Google Scholar 

  • Bakhsh K, Kamran MA (2019) Adaptation to climate change in rain-fed farming system in Punjab, Pakistan. Int J Commons 13:833–847

    Google Scholar 

  • Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci 16:15811–15851

    PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560

    Google Scholar 

  • Barakat MN, Al-Doss AA, Elshafei AA, Moustafa KA (2011) Identification of new microsatellite marker linked to the grainfilling rate as indicator for heat tolerance genes in F2 wheat population. Aust J Crop Sci 5:104–110

    Google Scholar 

  • Barbon WJD, Khaing O, Thant PSJ (2022) Exploring pathways for promoting and scaling up climate-smart agriculture in Myanmar. Asian J Agric Dev 19:25–42

    Google Scholar 

  • Baul TK, McDonald M (2015) Integration of Indigenous knowledge in addressing climate change. Indian J Tradit Knowl 1:20–27

    Google Scholar 

  • Beumer KJ, Trautman JK, Bozas A, Ji-Long L, Rutter J, Gall JG, Carroll D (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 105:19821–19826

    PubMed  PubMed Central  Google Scholar 

  • Bevan M, Waugh R (2007) Applying plant genomics to crop improvement. BioMed Central, London

    Google Scholar 

  • Bhatti MT, Ahmad W, Shah MA, Khattak MS (2019) Climate change evidence and community level autonomous adaptation measures in a canal irrigated agriculture system of Pakistan. Clim Dev 11:203–211

    Google Scholar 

  • Bhutta WM, Amjad M (2015) Molecular characterization of salinity tolerance in wheat (Triticum aestivum L.). Arch Agron Soil Sci 61:1641–1648

    Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28(4):230–238

    PubMed  Google Scholar 

  • Bryan E, Ringler C, Okoba B, Roncoli C, Silvestri S, Herrero M (2013) Adapting agriculture to climate change in Kenya: household strategies and determinants. J Environ Manag 114:26–35

    Google Scholar 

  • Bryan BA, King D, Zhao G (2014) Influence of management and environment on Australian wheat: Information for sustainable intensification and closing yield gaps. Environ Res Lett 9(4):044005

    Google Scholar 

  • Bush WS, Moore JH (2012) Genome-wide association studies. PLoS Comput Biol 8:e1002822

    PubMed  PubMed Central  Google Scholar 

  • Challinor AJ, Arenas-Calles LN, Whitfield S (2022) Measuring the effectiveness of climate-smart practices in the context of food systems: progress and challenges. Front Sustain Food Syst 6:853630

    Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change 4(4):287–291

    Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268

    PubMed  Google Scholar 

  • Chen J, Chopra R, Hayes C, Morris G, Marla S, Burke J, ** leaves’ heat tolerance during vegetative growth stages in a sorghum association panel. Plant Genome 10:1–15

    Google Scholar 

  • Chen L, Fang Y, Li X, Zeng K, Chen H, Zhang H, Yang H, Cao D, Hao Q, Yuan S, Zhang C, Guo W, Chen S, Yang Z, Shan Z, Zhang X, Qiu D, Zhan Y, Zhou XA (2020) Identification of soybean drought-tolerant genotypes and loci correlated with agronomic traits contributes new candidate genes for breeding. Plant Mol Biol 102(1–2):109–122

    PubMed  Google Scholar 

  • Chopra R, Burow G, Burke JJ, Gladman N, **n Z (2017) Genome-wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress. BMC Plant Biol 17:12

    PubMed  PubMed Central  Google Scholar 

  • Choruma DJ, Balkovic J, Odume ON (2019) Calibration and validation of the EPIC model for maize production in the Eastern Cape, South Africa. Agronomy 9:494

    Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: Where do we stand? Plant Physiol 147:469–486

    PubMed  PubMed Central  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    PubMed  Google Scholar 

  • Cortner O, Garrett RD, Valentim JF, Ferreira J, Niles MT, Reis J, Gil J (2019) Perceptions of integrated crop-livestock systems for sustainable intensification in the Brazilian Amazon. Land Use Policy 82:841–853

    Google Scholar 

  • Da Silva Dias JC (2015) Biodiversity and Plant Breeding as Tools for Harmony Between Modern Agriculture Production and the Environment. In: Molecular approaches to genetic diversity. InTechOpen, London

    Google Scholar 

  • Dalla Costa L, Malnoy M, Gribaudo I (2017) Breeding next generation tree fruits: technical and legal challenges. Hortic Res 4:17067

    PubMed  PubMed Central  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11:0156362

    Google Scholar 

  • Deressa TT (2007) Measuring the economic impact of climate change on Ethiopian agriculture: Ricardian Approach. Policy Research Working Paper; No. 4342. World Bank, Washington, DC

    Google Scholar 

  • Deressa TT, Hassan RM, Ringler C, Alemu T, Yesuf M (2009) Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob Environ Chang 19:248–255

    Google Scholar 

  • Des Marais DL, Hernandez KM, Juenger TE (2013) Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu Rev Ecol Evol Syst 44:5–29

    Google Scholar 

  • Devi EL, Devi CP, Kumar S, Sharma S, Beemrote A, Chongtham SK, Akoijam R (2017) Marker assisted selection (MAS) towards generating stress tolerant crop plants. Plant Gene 11:205–218

    Google Scholar 

  • Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3–14

    PubMed  Google Scholar 

  • Dixit S, Singh A, Sandhu N, Bhandari A, Vikram P, Kumar A (2017) Combining drought and submergence tolerance in rice: marker-assisted breeding and QTL combination effects. Mol Breed 37:143

    Google Scholar 

  • Dogan I, Kekec G, Ozyigit II, Sakcali MS (2012) Salinity induced changes in cotton (Gossypium hirsutum L.). Pak J Bot 44:21–25

    Google Scholar 

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    PubMed  PubMed Central  Google Scholar 

  • Driedonks N, Rieu I, Vriezen WH (2016) Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod 29:67–79

    PubMed  PubMed Central  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J 33:751–763

    PubMed  Google Scholar 

  • Fahad S, Wang J (2020) Climate change, vulnerability, and its impacts in rural Pakistan: a review. Environ Sci Pollut Res 27:1334–1338

    Google Scholar 

  • Fang Y, You J, **e K, **e W, **ong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–563

    PubMed  Google Scholar 

  • FAO (2021) The state of food security and nutrition in the world. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Farooqi AB, Khan AH, Mir H (2005) Climate change perspective in Pakistan. Pak J Meteorol 2:11–21

    Google Scholar 

  • Flint-Garcia SA (2013) Genetics and consequences of crop domestication. J Agric Food Chem 61:8267–8276

    PubMed  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    PubMed  Google Scholar 

  • Foolad MR (2005) Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC, (eds) Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches. The Haworth Press Inc., New York, pp 613–684

    Google Scholar 

  • Foresight UK (2011) The future of food and farming: challenges and choices for global sustainability. Government Office for Science. Foresight, Final Project Report

    Google Scholar 

  • Francini A, Sebastiani L (2019) Abiotic stress effects on performance of horticultural crops. Horticulturae 5:67

    Google Scholar 

  • Fukao T, **ong L (2013) Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? Curr Opin Plant Biol 16:196–204

    PubMed  Google Scholar 

  • Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364

    PubMed  PubMed Central  Google Scholar 

  • Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Godfray HCJ (2013) Sustainable intensification in agriculture: premises and policies. Science 341(6141):33–34

    PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    PubMed  Google Scholar 

  • Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc 369(1639):20120273

    Google Scholar 

  • Gupta D, Bhattacharjee O, Mandal D (2019) CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci 232:116636

    PubMed  Google Scholar 

  • Habib ur Rahman M, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253-254:94–113

    Google Scholar 

  • Haley SD, Johnson JJ, Peairs FB, Quick JS, Stromberger JA, Clayshulte SR, Butler JD, Rudolph JB, Seabourn BW, Bai G (2007) Registration of ‘Ripper’ wheat. J Plant Regist 1:1–6

    Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273:26857–26861

    PubMed  Google Scholar 

  • He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116

    PubMed  PubMed Central  Google Scholar 

  • Henriksson PJG, Belton B, Murshed-e-jahan K, Rico A (2018) Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment. Proc Natl Acad Sci 115(12):2958–2963

    PubMed  PubMed Central  Google Scholar 

  • Hina A, Cao Y, Song S, Li S, Sharmin RA, Elattar MA, Bhat JA, Zhao T (2020) High-resolution map** in two RIL populations refines major “QTL Hotspot” Regions for seed size and shape in Soybean (Glycine max L.). Int J Mol Sci 21(3):1040

    Google Scholar 

  • Hochman Z, Carberry PS, Robertson MJ, Gaydon DS, Bell LW, Mcintosh PC (2013) Prospects for ecological intensification of Australian agriculture. Eur J Agron 44:109–123

    Google Scholar 

  • Hu Y, Burucs Z, Tucher SV, Schmidhalter U (2007) Short term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environ Exp Bot 60:268–275

    Google Scholar 

  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192:48

    Google Scholar 

  • Iglesias A, Quiroga S, Schlickenrieder J (2010) Climate change and agricultural adaptation: assessing management uncertainty for four crop types in Spain. Clim Res 44:83–94

    Google Scholar 

  • Imran MA, Ali A, Ashfaq M, Hassan S, Culas R, Ma C (2018) Impact of Climate Smart Agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability 10:2101

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Contribution of Working, pp. 1–32

    Google Scholar 

  • IPCC (2019) Climate change and land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management food security, and greenhouse gas fluxes in terrestrial ecosystems. Summary for Policymakers

    Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved inbrassica napus and other plant species. Plant Physiol 127:910–917

    PubMed  PubMed Central  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Google Scholar 

  • Javed SA, Haider A, Nawaz M (2020) How agricultural practices managing market risk get attributed to climate change? Quasi-experiment evidence. J Rural Stud 73:46–55

    Google Scholar 

  • Jha PK, Vi’svavidyalaya T (2015) Proceedings of the International Conference on Biodiversity, Livelihood and Climate Change in the Himalayas. Central Department of Botany, Tribhuvan University. Available online: http://pi.lib.uchicago.edu/1001/cat/bib/11343348. Accessed 30 Aug 2021

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Plant breeding from laboratories to fields. Intech, Croatia, pp. 45–83

    Google Scholar 

  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    PubMed  PubMed Central  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Do Choi Y, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    PubMed  PubMed Central  Google Scholar 

  • Kadiyala MDM, Nedumaran S, Singh P, Chukka S, Irshad MA, Bantilan MCS (2015) An integrated crop model and GIS decision support system for assisting agronomic decision making under climate change. Sci Total Environ 521:123–134

    Google Scholar 

  • Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, Kumpatla SP, Emani C, Abdurakhmonov IY (2007) Genome editing in plants: An overview of tools and applications. Int J Agron: 1–15

    Google Scholar 

  • Kan G, Zhang W, Yang W, Ma D, Zhang D, Hao D, Hu Z, Yu D (2015) Association map** of soybean seed germination under salt stress. Mol Genet Genomics 290(6):2147–2162

    PubMed  Google Scholar 

  • Karlsson JO, Roos E (2019) Resource-efficient use of land and animals-Environmental impacts of food systems based on organic crop** and avoided food-feed competition. Land Use Policy 85:63–72

    Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    PubMed  Google Scholar 

  • Keurentjes JJ, Koornneef M, Vreugdenhil D (2008) Quantitative genetics in the age of omics. Curr Opin Plant Biol 11:123–128

    PubMed  Google Scholar 

  • Khalid AM, Hina T, Hameed S, Hamid Nasir M, Ahmad I, Ur Rehman Naseer MA (2020) Modeling adaptation strategies against climate change impacts in integrated rice-wheat agricultural production system of Pakistan. Int J Environ Res Public Health 17:2522

    Google Scholar 

  • Khan MI, Walker D (2015) Application of crop growth simulation models in agriculture with special reference to water management planning. Int J Core Eng Manag 2:113–130

    Google Scholar 

  • Khan I, Lei H, Shah IA, Ali I, Khan I, Muhammad I, Huo X, Javed T (2020) Farm households’ risk perception, attitude and adaptation strategies in dealing with climate change: Promise and perils from rural Pakistan. Land Use Policy 91:104395

    Google Scholar 

  • Khan NA, Qiao J, Abid M, Gao Q (2021) Understanding farm-level cognition of and autonomous adaptation to climate variability and associated factors: Evidence from the rice-growing zone of Pakistan. Land Use Policy 105:105427

    Google Scholar 

  • Kiriga WJ, Yu Q, Bill R (2016) Breeding and genetic engineering of drought-resistant crops. Int J Agric Crop 9(1):7–12

    Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, Usadel B, Salts Y, Barg R (2017) Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15:634–647

    PubMed  Google Scholar 

  • Kochevenko A, Jiang Y, Seiler C, Surdonja K, Kollers S, Reif JC, Korzun V, Graner A (2018) Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC Plant Biol 18:106

    PubMed  PubMed Central  Google Scholar 

  • Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563

    PubMed  PubMed Central  Google Scholar 

  • Kristensen K, Schelde K, Olesen JE (2011) Winter wheat yield response to climate variability in Denmark. J Agric Sci 149:33–47

    Google Scholar 

  • Kumar M (2013) Crop plants and abiotic stresses. J Biomol Res Ther 3:e125

    Google Scholar 

  • Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N (2017) Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One 12:e0171254

    PubMed  PubMed Central  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276

    PubMed  PubMed Central  Google Scholar 

  • Leon TBD, Linscombe S, Subudhi PK (2016) Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice 9:52. https://doi.org/10.1186/s12284-016-0125-2

  • Li C, Ng CKY, Fan LM (2015) MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot 114:80–91

    Google Scholar 

  • Liang H, Lu Y, Liu H, Wang F, **n Z, Zhang Z (2008) A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. J Exp Bot 59:3111–3120

    PubMed  PubMed Central  Google Scholar 

  • Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P (2010) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11:719

    PubMed  PubMed Central  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  Google Scholar 

  • Liu W, Yuan JS, Stewart CN (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781

    PubMed  Google Scholar 

  • Liu Z, Li H, Gou Z, Zhang Y, Wang X, Ren H, Wen Z, Kang BK, Li Y, Yu L, Gao H, Wang D, Qi X, Qiu L (2020) Genome-wide association study of soybean seed germination under drought stress. Mol Genet Genomics 295:661–673

    PubMed  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A 102:2232–2237

    PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Burke MB (2009) Climate Change and Food Security: adapting Agriculture to a Warmer World. Springer

    Google Scholar 

  • Lobell DB, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol 150:1443–1452

    Google Scholar 

  • Lobell DB, Field CB, Cahill KN, Bonfils C (2006) Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agric For Meteorol 141:208–218

    Google Scholar 

  • Loos J, Abson DJ, Chappell MJ, Hanspach J, Mikulcak F, Tichit M, Fischer J (2014) Putting meaning back into "sustainable intensification". Front Ecol Environ 12:356–361

    Google Scholar 

  • Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525

    PubMed  Google Scholar 

  • Lu M, Zhang DF, Shi YS, Song YC, Wang TY, Li Y (2013) Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis. Plant Cell Tissue Organ Cult 115:443–455

    Google Scholar 

  • Lu X, Shi Y, Chen C, Yu M (2017) Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: a case study of jiangsu province. Land Use Policy 69:25–40

    Google Scholar 

  • Lu X, Qu Y, Sun P, Yu W, Peng W (2020) Green transition of cultivated land use in the yellow river basin: a perspective of green utilization efficiency evaluation. Land 9:475

    Google Scholar 

  • Mahmoud AE, Benjamin K, Li S, Shiyu S, Cao YC, Muhammed A, Aiman H, Abou-Elwafa SF, Tuanjie Z (2021) Identification and validation of major QTLs, epistatic interactions and candidate genes for soybean seed shape and weight using two related RIL populations. Front Genet 12:666440

    Google Scholar 

  • Malhi GS, Kaur M, Kaushik P, Alyemeni MN, Alsahli A, Ahmad P (2020) Arbuscular mycorrhiza in combating abiotic stresses in vegetables: an eco-friendly approach. Saudi J Biol Sci

    Google Scholar 

  • Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability 13:1318

    Google Scholar 

  • Mallikarjuna G, Mallikarjuna K, Reddy M, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33:1689–1697

    PubMed  Google Scholar 

  • Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    PubMed  Google Scholar 

  • Martinez-Baron D, Orjuela G, Renzoni G, Rodrıguez AML, Prager SD (2018) Small-scale farmers in a 1.5 degree Celcius future: the importance of local social dynamics as an enabling factor for implementation and scaling of climate-smart agriculture. Curr Opin Environ Sustain 31:112–119

    Google Scholar 

  • Merchuk-Ovnat L, Barak V, Fahima T, Ordon F, Lidzbarsky GA, Krugman T, Saranga Y (2016) Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front Plant Sci 7:452

    PubMed  PubMed Central  Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR–Cas system. Cell Res 23:1233–1236

    PubMed  PubMed Central  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta Gene Regul Mech 1819:86–96

    Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Hane JK, Babu V, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D (2018) Adapting legume crops to climate change using genomic approaches. Plant Cell Environ 42:6–19

    PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M (2015) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:910

    PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    PubMed  PubMed Central  Google Scholar 

  • Nasir IR, Rasul F, Ahmad A, Asghar HN, Hoogenboom G (2020) Climate change impacts and adaptations for fine, coarse, and hybrid rice using CERES-Rice. Environ Sci Pollut Res 27:9454–9464

    Google Scholar 

  • Nejat N, Mantri N (2017) Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr Issues Mol Biol 23:1–16

    PubMed  Google Scholar 

  • Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Al E (2015) Global effects of land use on local terrestrial biodiversity. Nature 520(7545):45–50

    PubMed  Google Scholar 

  • Nisar S, Iqbal M, Ashraf J, Naeem M, Ahmad Z, Afzal M, Raza A (2022) Enhancing salt tolerance in cotton by improving its morpho-physiological and antioxidant potential through foliar applied silicon. Silicon: 1–10

    Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170

    PubMed  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genomewide analysis of NAC transcription factor family in rice. Gene 465:30–44

    PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    PubMed  PubMed Central  Google Scholar 

  • OECD (2011) The Economics of Adapting Fisheries to Climate Change. OECD Publishing, Paris

    Google Scholar 

  • Ogunyiola A, Gardezi M, Vij S (2022) Smallholder farmers’ engagement with climate smart agriculture in Africa: role of local knowledge and upscaling. Clim Policy 4:411–426

    Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262

    Google Scholar 

  • Omer A, Pascual U, Russell N (2010) A theoretical model of agrobiodiversity as a supporting service for sustainable agricultural intensification. Ecol Econ 69(10):1926–1933

    Google Scholar 

  • Pandey RK, Maranville JW, Crawford JTW (2001) Agriculture intensification and ecologically sustainable land use systems in niger: Transition from traditional to technologically sound practices. J Sustain Agric 19:5–24

    Google Scholar 

  • Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760

    PubMed  PubMed Central  Google Scholar 

  • Pikkuhookana P, Sillanpää M (2014) Combined linkage disequilibrium and linkage map**: Bayesian multilocus approach. Heredity 112:351

    PubMed  Google Scholar 

  • Porter CH, Villalobos C, Holzworth D, Nelson R, White JW, Athanasiadis IN, Zhang M (2014a) Harmonization and translation of crop modeling data to ensure interoperability. Environ Model Softw 62:495–508

    Google Scholar 

  • Porter JR, **e L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Travasso MI (2014b) Food security and food production systems

    Google Scholar 

  • Pretty J, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Int J Sustain Agric 9:5–24

    Google Scholar 

  • Qazlbash SK, Zubair M, Manzoor SA, ul Haq A, Baloch MS (2021) Socio-economic determinants of climate change adaptations in the flood-prone rural community of Indus Basin, Pakistan. Environ Dev 37:100603

    Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    PubMed  Google Scholar 

  • Qin P, Lin Y, Hu Y, Liu K, Mao S, Li Z, Wang J, Liu Y, Wei Y, Zheng Y (2016) Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genet Mol Biol 39:398–407

    PubMed  PubMed Central  Google Scholar 

  • Rai KK (2022) Integrating speed breeding with artificial intelligence for develo** climate-smart crops. Mol Biol Rep. https://doi.org/10.1007/s11033-022-07769-4

  • Raile ED, Young LM, Kirinya J, Bonabana-Wabbi J, Raile ANW (2021) Building public will for climate-smart agriculture in Uganda: prescriptions for industry and policy. J Agric Food Ind Organ 19:39–50

    Google Scholar 

  • Ramirez-Villegas J, Watson J, Challinor AJ (2015) Identifying traits for genotypic adaptation using crop models. J Exp Bot 66:3451–3462

    PubMed  Google Scholar 

  • Rashed MA, Sabry SBS, Atta AH, Mostafa AM (2010) Development of RAPD markers associated drought tolerance in bread wheat (Triticum aestivum L.). Egypt J Genet Cytol 39:131–142

    Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8:34

    Google Scholar 

  • Razzaq MK, Akhter M, Ahmad RM, Cheema KL, Hina A, Karikari B (2022) CRISPR-Cas9 based stress tolerance: new hope for abiotic stress tolerance in chickpea (Cicer arietinum). Mol Biol Rep 49:8977–8985

    PubMed  Google Scholar 

  • Reynolds M, Tattaris M, Cossani CM, Ellis M, Yamaguchi-Shinozaki K, Saint Pierre C (2015) Exploring genetic resources to increase adaptation of wheat to climate change. In: Advances in wheat genetics: from genome to field. Springer, Berlin/Heidelberg, pp 355–368

    Google Scholar 

  • Richard B, Qi A, Fitt BDL (2022) Control of crop diseases through Integrated Crop Management to deliver climate- smart farming systems for low- and high- input crop production. Plant Pathol 71:187–206

    Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    PubMed  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    PubMed  Google Scholar 

  • Saleh B (2016) DNA changes in cotton (Gossypium hirsutum L.) under salt stress as revealed by RAPD marker. Adv Hortic Sci 60:13–21

    Google Scholar 

  • Salisu K (2022) Barriers to the adoption of climate smart agricultural practices in the dryland of Northeren Nigeria. J Agric Agric Technol 8:232–243

    Google Scholar 

  • Salman A, Husnain MI, ul Jan I, Ashfaq M, Rashid M, Shakoor U (2018) Farmers’ adaptation to climate change in Pakistan: Perceptions, options and constraints. Sarhad J Agric 34:963–972

    Google Scholar 

  • Sardar A, Kiani AK, Kuslu Y (2021) Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan. Environ Dev Sustain 23:10119–10140

    Google Scholar 

  • Scheben A, Yuan Y, Edwards D (2016) Advances in genomics for adapting crops to climate change. Curr Plant Biol 6:2–10

    Google Scholar 

  • Scherer LA, Verburg PH, Schulp CJE (2018) Opportunities for sustainable intensification in European agriculture. Global Environ Change J 48:43–55

    Google Scholar 

  • Schiefer J, Lair GJ, Blum WEH (2016) Potential and limits of land and soil for sustainable intensification of european agriculture. Agric Ecosyst Environ 230:283–293

    Google Scholar 

  • Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on African agriculture. Environ Res Lett 5:014010

    Google Scholar 

  • Schulze RE, Durand W (2016) Maize Production in South Africa and Climate Change. In: Schulze RE (ed) Handbook for farmers, officials and other stakeholders on adaptation to climate change in the agriculture sector within South Africa. Section C: Crops in South Africa and Climate Change, Chapter C1

    Google Scholar 

  • Seo PJ, **ang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289

    PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    PubMed  PubMed Central  Google Scholar 

  • Shah SH, Ali S, Hussain Z, Jan SA, Ali GM (2016) Genetic improvement of tomato (Solanum lycopersicum) with AtDREB1A gene for cold stress tolerance using optimized agrobacterium-mediated transformation system. Int J Agric Biol 18:471–782

    Google Scholar 

  • Shah SIA, Zhou J, Shah AA (2019) Ecosystem-based Adaptation (EbA) practices in smallholder agriculture; emerging evidence from rural Pakistan. J Clean Prod 218:673–684

    Google Scholar 

  • Shah H, Siderius C, Hellegers P (2020) Cost and effectiveness of in-season strategies for co** with weather variability in Pakistanis agriculture. Agric Syst 178:102746

    Google Scholar 

  • Shahid R, Shijie L, Shahid S, Altaf MA, Shahid H (2021) Determinants of reactive adaptations to climate change in semi-arid region of Pakistan. J Arid Environ 193:104580

    Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2010) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360

    PubMed  Google Scholar 

  • Shiriga K, Sharma R, Kumar K, Yadav SK, Hossain F, Thirunavukkarasu N (2014) Genomewide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene 2:407–417

    PubMed  PubMed Central  Google Scholar 

  • Sietz D, Ordoñez JC, Kok MTJ, Janssen P, Hilderink HBM, Tittonell P, Van Dijk H (2017) Nested archetypes of vulnerability in African drylands: Where lies potential for sustainable agricultural intensification? Environ Res Lett 12(9):095006

    Google Scholar 

  • Smith A, Snapp S, Chikowo R, Thorne P, Bekunda M, Glover J (2017) Measuring sustainable intensification in smallholder agroecosystems: a review. Global Food Secur 12:127–138

    Google Scholar 

  • Song J (2016) Advances in research methods on the impacts of climate change on agricultural production. Sci Technol Dev 12:765–776

    Google Scholar 

  • Steduto P, Raes D, Hsiao T, Fereres E, Heng L, Howell T, Geerts S (2009) Concepts and applications of AquaCrop: The FAO crop water productivity model. In: Cao W, White J, Wang E (eds) Crop modeling and decision support. Springer, Berlin/Heidelberg, pp 175–191

    Google Scholar 

  • Stinchcombe JR, Hoekstra HE (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158

    PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    PubMed  PubMed Central  Google Scholar 

  • Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL (2016) Map** QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 60:26–45

    PubMed  Google Scholar 

  • Tan MH, Li YY (2019) Spatial and Temporal Variation of Cropland at the Global Level from 1992 to 2015. J Resour Ecol 10:235–245

    Google Scholar 

  • Tankha S (2020) Overcoming barriers to climate smart agriculture in India. Int J Clim Change 12:108–127

    Google Scholar 

  • Taranto F, Nicolia A, Pavan S, De Vita P (2018) D’Agostino N Biotechnological and digital revolution for climate-smart plant breeding. Agronomy 8:277

    Google Scholar 

  • Thoen MP, Davila Olivas NH, Kloth KJ, Coolen S, Huang PP, Aarts MG, Bac-Molenaar JA, Bakker J, Bouwmeester HJ, Broekgaarden C (2017) Genetic architecture of plant stress resistance: multi-trait genomewide association map**. New Phytol 213:1346–1362

    PubMed  Google Scholar 

  • Tollefson J (2011) Drought-tolerant maize gets US debut. Nature 469:144

    PubMed  Google Scholar 

  • Uffelmann E, Huang QQ, Munung NS (2021) Genome-wide association studies. Nat Rev Methods Primers 1:59

    Google Scholar 

  • Ullah W, Nihei T, Nafees M, Zaman R, Ali M (2018) Understanding climate change vulnerability, adaptation and risk perceptions at household level in Khyber Pakhtunkhwa, Pakistan. Int J Clim Change Strateg Manag 10:359–378

    Google Scholar 

  • UNFCCC (2010) Report of the Conference of the Parties on its Fifteenth Session. In: Proceedings of the Part Two: Decisions Adopted by the Conference of the Parties, Copenhagen, Denmark, 7–19 December 2009. IFAD. Rural Poverty Report 2011. IFAD, Rome

    Google Scholar 

  • Verslues PE, Lasky JR, Juenger TE, Liu TW, Kumar MN (2014) Genome-wide association map** combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiol 164:144–159

    PubMed  Google Scholar 

  • Vignola R, Harvey CA, Bautista-Solis P, Avelino J, Rapidel B, Donatti C, Martinez R (2015) Ecosystem-based adaptation for smallholder farmers: definitions, opportunities and constraints. Agric Ecol Environ 211:126–132

    Google Scholar 

  • Waaswa A, Nkurumwa AO, Kibe AM, Kipkemoi JN (2021) Climate-Smart agriculture and potato production in Kenya: review of the determinants of practice. Clim Dev. https://doi.org/10.1080/17565529.2021.1885336

  • Wan H, Chen L, Guo J, Li Q, Wen J, Yi, B, Ma C, Tu J, Fu T, Shen J (2017) Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front Plant Sci 8:593

    Google Scholar 

  • Wang CT, Ru JN, Liu YW, Li M, Zhao D, Yang JF, Fu JD, Xu ZS (2018) Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. Int J Mol Sci 19:3046

    PubMed  PubMed Central  Google Scholar 

  • Wani SH, Choudhary M, Kumar P, Akram NA, Surekha C, Ahmad P, Gosal SS (2018) Marker-assisted Breeding for Abiotic Stress Tolerance in Crop Plants. In: Biotechnologies of crop improvement. Springer, Berlin/Heidelberg, pp 1–23

    Google Scholar 

  • Ward PS, Florax RJGM, Flores-Lagunes A (2014) Climate change and agricultural productivity in Sub-Saharan Africa: a spatial sample selection model. Eur Rev Agric Econ 41:199–226

    Google Scholar 

  • Weltin M, Zasada I, Piorr A, Debolini M, Geniaux G, Perez OM, Schulp CJE (2018) Conceptualising fields of action for sustainable intensification–a systematic literature review and application to regional case studies. Agric Ecosyst Environ 257:68–80

    Google Scholar 

  • Whitbread AM, Robertson MJ, Carberry PS, Dimes JP (2010) How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. Eur J Agron 32:51–58

    Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    PubMed  Google Scholar 

  • **ong W, Balkovič J, van der Velde M, Zhang X, Izaurralde RC, Skalský R, Ober-steiner M (2014) A calibration procedure to improve global rice yield simulations with EPIC. Ecol Model 273:128–139

    Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2008) Functions of the ERF transcription factor family in plants. Botany 86:969–977

    Google Scholar 

  • Yadav SB, Patel HR, Patel GG, Lunagaria MM, Karande BI, Shah AV, Pandey V (2012) Calibration and validation of PNUTGRO (DSSAT v4. 5) model for yield and yield attributing characters of kharif groundnut cultivars in middle Gujarat region. J Agrometeorol Special 14:24–29

    Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    PubMed  PubMed Central  Google Scholar 

  • Younis A, Riaz A, Qasim M, Mansoor F, Zulfiqar F, Tariq U, Bhatti ZM (2017) Screening of marigold (Tagetes erecta L.) cultivars for drought stress based on vegetative and physiological characteristics. Int J Food Allied Sci 3:56–63

    Google Scholar 

  • Yu Z, Chang F, Lv W, Sharmin RA, Wang Z, Kong J, Bhat JA, Zhao T (2019) Identification of QTN and Candidate Gene for Seed-flooding Tolerance in Soybean Glycine max (L.) using Genome-Wide Association Study (GWAS). Genes 10:957

    Google Scholar 

  • Zafar SA, Zaidi SS, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A (2020) Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. J Exp Bot 71:470–479

    PubMed  Google Scholar 

  • Zhang GL, Chen LY, **ao GY, **ao YH, Chen XB, Zhang ST (2009) Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers. Agric Sci China 8:482–487

    Google Scholar 

  • Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X (2012) An R2R3 MYB transcription factor in wheat, Ta PIMP 1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense-and stress-related genes. New Phytol 196:1155–1170

    PubMed  Google Scholar 

  • Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64(1):60–73

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Hina A, Song S (2019) Whole-genome map** identified novel "QTL hotspots regions" for seed storability in soybean (Glycine max L.). BMC Genom 20:499

    Google Scholar 

  • Zhao Z, Sha Z, Liu Y, Wu S, Zhang H, Li C, Zhao Q, Cao L (2016) Modeling the impacts of alternative fertilization methods on nitrogen loading in rice production in Shanghai. Sci Total Environ 566:1595–1603

    PubMed  Google Scholar 

  • Zhong T, Mitchell B, Scott S, Huang X, Yi L, **ao L (2017) Growing centralization in China’s farmland protection policy in response to policy failure and related upward-extending unwillingness to protect farmland since 1978. Environ Plan C 35(6):1075–1097

    Google Scholar 

  • Zhong T, Qian Z, Huang X, Zhao Y, Zhou Y, Zhao Z (2018) Impact of the top-down quota-oriented farmland preservation planning on the change of urban land-use intensity in China. Habitat Int 77:71–79

    Google Scholar 

  • Zhu X, Qi L, Liu X, Cai S, Xu H, Huang R, Li J, Wei X, Zhang Z (2014) The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol 164:1499–1514

    PubMed  PubMed Central  Google Scholar 

  • Zhu C, Bortesi L, Baysal C, Twyman RM, Fischer R, Capell T, Schillberg S, Christou P (2017) Characteristics of genome editing mutations in cereal crops. Trends Plant Sci 22:38–52

    PubMed  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9cytidine deaminase fusion. Nat Biotechnol 35:438–440

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, Z. et al. (2023). Climate Change and Global Crop Production. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-37424-1_2

Download citation

Publish with us

Policies and ethics

Navigation