Antioxidant Defense: A Key Mechanism of Lead Tolerance

  • Chapter
  • First Online:
Lead Toxicity: Challenges and Solution

Abstract

Heavy metal lead (Pb) is toxic to both plants and animals. It is known to elicit its toxic effects by enhanced production of ROS which adversely impact all the major cellular biomolecules: lipids, proteins and DNA. To protect themselves from lead toxicity, plants and animals have evolved antioxidant defense mechanisms. Antioxidants have been known to exert their effects by either enzymatic or non-enzymatic methods. Antioxidants reduce oxidative stress by scavenging ROS which in turn reduces their toxic effects on the cell. In addition to antioxidant defense, plants and animals also have the ability to develop tolerance to lead toxicity through various mechanisms such as chelation, compartmentalization, and detoxification. This chapter focused on the role of antioxidants in tolerating lead exposure and the mechanisms underlying lead tolerance in plants and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, Goel SK, Chandra R, Behari JR (2010) Role of vitamin E in preventing acute mercury toxicity in rat. Environ Toxicol Pharmacol 29:70–78

    Article  CAS  Google Scholar 

  • Al-Attar AM (2011) Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J Biol Sci 18(1):63–72

    Article  CAS  Google Scholar 

  • Ali MA, Fahad S, Haider I, Ahmed N, Ahmad S, Hussain S, Arshad M (2019) Oxidative stress and antioxidant defense in plants exposed to metal/metalloid toxicity. In: Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, pp 353–370

    Google Scholar 

  • Al-Othman AM, Al-Numair KS, El-Desoky GE, Yusuf K, Al Othman ZA, Aboul-Soud MAM (2011) Protection of tocopherol and selenium against acute effects of malathion on liver and kidney of rats. Afr J Pharm Pharmacol 5:1054–1060

    Article  CAS  Google Scholar 

  • Antonowicz J, Andrzejak R, Lepetow T (1998) Influence of heavy metals, especially lead, on lipid metabolism, serum alpha-tocopherol level, total antioxidant status, and erythrocyte redox status of copper smelter workers. Fresenius J Anal Chem 361:365–367

    Article  CAS  Google Scholar 

  • Arif N, Yadav V, Singh S, Kushwaha BK, Singh S, Tripathi DK, Chauhan DK (2016) Assessment of antioxidant potential of plants in response to heavy metals. Plant Responses Xenobiot 97–125

    Google Scholar 

  • Bhaduri AM, Fulekar MH (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Bio/Technol 11:55–69

    Article  CAS  Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31(2):244–257

    CAS  Google Scholar 

  • Dai J, Zhang L, Du X, Zhang P, Li W, Guo X, Li Y (2018) Effect of lead on antioxidant ability and immune responses of crucian carp. Biol Trace Elem Res 186:546–553

    Article  CAS  Google Scholar 

  • Das D, Moniruzzaman M, Sarbajna A, Chakraborty SB (2017) Effect of heavy metals on tissue-specific antioxidant response in Indian major carps. Environ Sci Pollut Res 24:18010–18024

    Article  CAS  Google Scholar 

  • Diplock AT, Watkins WJ, Heurson M (1986) Selenium and heavy metals. Ann Clin Res 18:55–60

    CAS  Google Scholar 

  • El-Sokkary GH, Abdel-Rahman GH, Kamel ES (2005) Melatonin protects against lead-induced hepatic and renal toxicity in male rats. Toxicology 213(1–2):25–33

    Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress Part I: Mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1(6):529–539

    Article  CAS  Google Scholar 

  • Flora SJS, Flora G, Saxena G, Mishra M (2007) Arsenic and lead induced free radical generation and their reversibility following chelation. Cell Mol Biol 53(1):26–

    Google Scholar 

  • Ghori NH, RuciÅ„ska R, Waplak S, Gwóźdź EA (1999) Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol Biochem 37(3):187–194

    Google Scholar 

  • Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16

    Google Scholar 

  • Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free Radical Biol Med 29(10):927–945

    Article  CAS  Google Scholar 

  • Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QMR (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630

    Article  CAS  Google Scholar 

  • Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Article  CAS  Google Scholar 

  • Kagi JHR, Kojima Y (eds) (1987) Metallothionein II: proceedings of the second international meeting on metallothionein and other low molecular

    Google Scholar 

  • Kagi JHR, Nordberg M (eds) (1979) Metallothionein. Experientia Supplementum, vol 34. Birkhauser Verlag, Basel

    Google Scholar 

  • Klaassen CD, Liu J, Chaudhari S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Ann Rev Pharmacol Toxicol 39:267–294

    Article  CAS  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238:215–220

    Article  CAS  Google Scholar 

  • Kumar R, Mini SJ, Munuswamy N (2013) Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of Milk fish (Chanoschanos) of Kaattuppalli Island, Chennai, India. Ecotoxicol Environ Saf 98:8–18

    Google Scholar 

  • Navabpour S, Yamchi A, Bagherikia S, Kafi H (2020) Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticumaestivum L.). Physiol Mol Biol Plants 26:793–802

    Article  CAS  Google Scholar 

  • Omidifar N, Nili-Ahmadabadi A, Nakhostin-Ansari A, Lankarani KB, Moghadami M, Mousavi SM, Ebrahimi Z (2021) The modulatory potential of herbal antioxidants against oxidative stress and heavy metal pollution: plants against environmental oxidative stress. Environ Sci Pollut Res 1–11

    Google Scholar 

  • Raza B, Javed M, Ambreen F, Latif F (2016) Toxic effect of lead chloride on antioxidant enzyme in the liver and kidney of fish. J Bioresour Manag 3(4):1

    Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Biochem 42(11):899–906

    Article  CAS  Google Scholar 

  • Said RS, Badr AM, Nada AS, El-Demerdash E (2014) Sodium selenite treatment restores long-lasting ovarian damage induced by irradiation in rats: impact on oxidative stress and apoptosis. Reprod Toxicol 43:85–93

    Article  CAS  Google Scholar 

  • Saleh AAS (2014) Potential effects of some antioxidants against lead toxicity. Int J Adv Res 2(5):824–834

    Google Scholar 

  • Schwenke DC, Behr SR (1998) Vitamin E combined with selenium inhibits atherosclerosis in hypercholesterolemic rabbits independently of effects on plasma cholesterol concentrations. Circ Res 83:366–377

    Article  CAS  Google Scholar 

  • Shaw CF, Savas MM, Petering DH (1991) Ligand substitution and sulfhydryl reactivity of metallothionein. Methods Enzymol 205:401–414

    Article  CAS  Google Scholar 

  • Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    Article  CAS  Google Scholar 

  • Vertuani S, Angusti A, Manfredini S (2004) The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des 10(14):1677–1694

    Article  CAS  Google Scholar 

  • Wieloch M, KamiÅ„ski P, Ossowska A, Koim-Puchowska B, StuczyÅ„ski T, Kuligowska-PrusiÅ„ska M, Odrowąż-Sypniewska G (2012) Do toxic heavy metals affect antioxidant defense mechanisms in humans? Ecotoxicol Environ Saf 78:195–205

    Article  CAS  Google Scholar 

  • Wu JP, Ma BY, Ren HW, Zhang LP, **ang Y, Brown MA (2007) Characterization of metallothioneins (MT-I and MT-II) in the yak. J Anim Sci 85:1357–1362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanchal Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, C., Singh, R., Shekhar, A. (2023). Antioxidant Defense: A Key Mechanism of Lead Tolerance. In: Kumar, N., Jha, A.K. (eds) Lead Toxicity: Challenges and Solution. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-37327-5_7

Download citation

Publish with us

Policies and ethics

Navigation