Molecular Mechanism of Lead Toxicity and Tolerance in Plants

  • Chapter
  • First Online:
Lead Toxicity: Challenges and Solution

Part of the book series: Environmental Science and Engineering ((ESE))

  • 181 Accesses

Abstract

Lead is found naturally in the environment and distributed due to its widespread application in petrol, paints, sludge, explosives as well as industrial effluents. In plants, toxicity is caused due to lead uptake as well as translocation which results in reduction of biomass yield. Generally, plants might avert the harmful influences of heavy metals by inducing of several cellular processes like compartmentalization inside the vacuoles, increase in the active efflux, adsorption to the cell wall, or generation of high concentration of metal chelates as protein complex like phytochelatins and metallothioneins, complexes of inorganic sulphides and organic citrates. Contrary to other metals, not much information is available for the processes of lead uptake, toxicity, generation of oxidative stress as well as detoxification in plants. Understanding physiological as well as biochemical processes involved in intake and translocation together with toxicity and tolerance of Lead in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed A, Tajmir-Riahi HA (1993) Interaction of toxic metal ions Cd2+, Hg2+ and Pb with light-harvesting proteins of chloroplast thylakoid membranes. An FTIR spectroscopic study. J Inorg Biochem 50:235–243

    Article  CAS  Google Scholar 

  • Ali B, Mwamba TM, Gill RA, Yang C, Ali S, Daud MK et al (2014a) Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul 74:261–273. https://doi.org/10.1007/s10725-014-9917-9

    Article  CAS  Google Scholar 

  • Ali B, Song WJ, Hu WZ, Luo XN, Gill RA, Wang J et al (2014b) Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oilseed rape. Ecotoxicol Environ Saf 102:25–33. https://doi.org/10.1016/j.ecoenv.2014.01.013

    Article  CAS  Google Scholar 

  • Allakhverdieva MY, Mamedov DM, Gasanov RA (2001) The effect of glycinebetaine on the heat stability of photosynthetic reactions in thylakoid membranes. Turk J Bot 25:11–17

    Google Scholar 

  • Andra SS, Datta R, Sarkar D, Sarkar D, Saminathan SK, Mullens CP, Bach SB (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157(7):2173–2183

    Google Scholar 

  • Angelone M, Bini C (1992) Trace elements concentrations in soils and plants of western Europe. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton, London, pp 19–60

    Google Scholar 

  • Arias JA, Peralta-Videa JR, Ellzey JT, Ren M, Viveros MN, Gardea-Torresdey JL (2010) Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray map**, ICP-OES and TEM techniques. Environ Exp Bot 68(2):139–148

    Article  CAS  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71(11):2187–2192

    Article  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer C, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, London, pp 77–100

    Google Scholar 

  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Gill RA (2021) Lead toxicity in cereals: mechanistic insight into toxicity, mode of action, and management. Front Plant Science 2248

    Google Scholar 

  • Atici Ö, Agar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plantarum 49(2):215–222

    Article  CAS  Google Scholar 

  • Baisak R, Rana D, Acharya P, Kar M (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35:489–495

    Google Scholar 

  • Baker AJ (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3(1–4):643–654. https://doi.org/10.1007/s12010-012-9657-0

    Article  CAS  Google Scholar 

  • Barbosa J, Cabral T, Ferreira D, Agnez-Lima L, Batistuzzo de Medeiros S (2010) Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotoxicol Environ Saf 73(3):320–325

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13(1):1–37

    Article  Google Scholar 

  • Barrutia O, Garbisu C, Hernández-Allica J, García-Plazaola JI, Becerril JM (2010) Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ Pollut 158(5):1710–1715

    Article  CAS  Google Scholar 

  • Bazzaz FA, Carlson RW, Rolfe GL (1975) The inhibition of corn and soybean photosynthesis by lead. Physiol Plant 34:326–329

    Google Scholar 

  • Bazzaz MB, Govindjee (1974) Effect of lead chloride on chloroplast reactions. Environ Lett 6:175–191

    Article  CAS  Google Scholar 

  • Bazzaz FA, Rolfe GL, Windle P (1974) Differing sensitivity of corn and soybean photosynthesis and transpiration to lead contamination. J Environ Qual 3:156–158

    Article  CAS  Google Scholar 

  • Beltagi MS (2005) Phytotoxicity of lead (Pb) to SDS-PAGE protein profile in root nodules of faba bean (Vicia faba L.) plants. Pak J Biol Sci 8(5):687–690

    Google Scholar 

  • Berry WL (1986) Plant factors in influencing the use of plant analysis as a tool for biogeochemical prospecting. In: Carlisle D, Berry WL, Kaplan IR, Watterson JR (eds) Mineral exploration: biological systems and organic matter. Englewood Cliffs, pp 13–32

    Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89(7):1113–1121

    CAS  Google Scholar 

  • Bi X, Ren L, Gong M, He Y, Wang L, Ma Z (2010) Transfer of cadmium and lead from soil to mangoes in an uncontaminated area, Hainan Island, China. Geoderma 155(1–2):115–120

    Article  CAS  Google Scholar 

  • Breckle SW (1991) Growth under stress. Heavy metals. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Inc., New York, pp 351–373

    Google Scholar 

  • Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci 1012:142–152

    Article  CAS  Google Scholar 

  • Brunet J, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77(8):1113–1120

    Google Scholar 

  • Burton KW, Morgan E, Roig A (1984) The influence of heavy metals on the growth of Sitka-spruce in South Wales forests. II. Green house experiments. Plant Soil 78:271–282

    Article  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Phys 46:95–122

    Google Scholar 

  • Burzynski M (1987) The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings. Acta Physiol Plant 9:229–238

    CAS  Google Scholar 

  • Burzynski M, Grabowski A (1984) Influence of lead on nitrate uptake and reduction in cucumber seedlings. Acta Soc Bot Pol 53:77–86

    Google Scholar 

  • Cao X, Ma LQ, Singh SP, Zhou Q (2008) Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environ Pollut 152(1):184–192

    Article  CAS  Google Scholar 

  • Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradere P, Guiresse M (2008) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144(1–2):287–298

    Article  CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67(3):467–473

    Article  CAS  Google Scholar 

  • Chaitanya KSK, Naithani SB (1994) Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. f. New Phytol 126:623–627

    Google Scholar 

  • Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35(1–2):255–265

    Article  CAS  Google Scholar 

  • Chen J, Zhu C, Li L, Sun Z, Pan X (2007) Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J Environ Sci (China) 19(1):44–49

    Article  CAS  Google Scholar 

  • Choudhury S, Panda S (2004) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium Nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut 167(1):73–90

    Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163(3):319–332

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Collin S, Baskar A, Geevarghese DM, Ali MNVS, Bahubali P, Choudhary R, Swamiappan S (2022) Bioaccumulation of lead (Pb) and its effects in plants: a review. J Hazard Mater Lett 100064

    Google Scholar 

  • de Abreu CA, de Abreu MF, de Andrade JC (1998) Distribution of lead in the soil profile evaluated by DTPA and Mehlich-3 solutions. Bragantia 57:185–192

    Google Scholar 

  • Dey SK, Dey J, Patra S, Pothal D (2007) Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol 19(1):53–60

    Article  CAS  Google Scholar 

  • Dong W, Lv H, **a G, Wang M (2012) Does diacylglycerol serve as a signaling molecule in plants? Plant Signal Behav 7:472–475

    Article  CAS  Google Scholar 

  • Drazkiewicz M (1994) Chlorophyll-occurrence, functions, mechanism of action, effects of internal and external factors. Photosynthetica 30:321–331

    CAS  Google Scholar 

  • Dumat C, Quenea K, Bermond A, Toinen S, Benedetti MF (2006) Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils. Environ Pollut 142(3):521–529

    Article  CAS  Google Scholar 

  • Eick MJ, Peak JD, Brady PV, Pesek JD (1999) Kinetics of lead adsorption and desorption on goethite: residence time effect. Soil Sci 164:28–39

    Article  CAS  Google Scholar 

  • Elzbieta W, Miroslawa C (2005) Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Sci Plant Nutr 51(2):203–212

    Google Scholar 

  • Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. Poisoning in the modern world-new tricks for an old dog. 10. https://doi.org/10.5772/intechopen.82511

  • Ernst WHO (1980) Biochemical aspects of cadmium in plants. In: Nriagu JO (ed) Cadmium in the environment. Wiley, New York, pp 639–653

    Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic levels. In: Schuurmann G (ed) Ecotoxicology: ecological fundamentals, chemical exposure and biological effects. Wiley, Heidelberg, pp 587–620

    Google Scholar 

  • Eun SO, Youn HS, Lee Y (2000) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:357–365

    Article  CAS  Google Scholar 

  • Fernandez LR, Vandenbussche G, Roosens N, Govaerts C, Goormaghtigh E, Verbruggen N (2012) Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens. BBA Proteins Proteom 1824:1016–1023

    Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress and tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Freisinger E (2008) Plant MTs-long neglected members of the metallothionein superfamily. Dalton Trans 0:6663–6675

    Google Scholar 

  • Frugoli JA, Zhang HH, Nuccio ML, McCourt P, McPeak MA, Thomas TI, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112:327–336

    Article  CAS  Google Scholar 

  • Garcia JS, Gratão PL, Azevedo RA, Arruda MAZ (2006) Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. J Agric Food Chem 54(22):8623–8630

    Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein J-P, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  CAS  Google Scholar 

  • Gaspar T, Penel C, Thrope T, Greppin H (1982) Peroxidases (1970–1980) A survey of their biochemical and physiological roles in higher plants. University of Geneva Press, Centre de Botanique, Geneva, pp 324–330

    Google Scholar 

  • Gastaldo J, Viau M, Bencokova Z, Joubert A, Charvet A, Balosso J, Foray M (2007) Lead contamination results in late and slowly repairable DNA double-strand breaks and impacts upon the ATM-dependent signaling pathways. Toxicol Lett 173(3):201–214

    Article  CAS  Google Scholar 

  • Gichner T, Znidar I, Száková J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res Genet Toxicol Environ Mutagen 652(2):186–190

    Article  CAS  Google Scholar 

  • Gidlow DA (2015) Lead toxicity. Occup Med 65(5):348–356. https://doi.org/10.1093/occmed/kqv018

  • Gill RA, Kanwar MK, Rodrigues dos Reis A, Ali B (2022) Heavy metal toxicity in plants: recent insights on physiological and molecular aspects. Front Plant Sci 12:3428

    Article  Google Scholar 

  • Girroti AW (1990) Photodynamic lipid peroxidation in biological systems. Photochem Photobiol 51:497–509

    Article  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445

    Article  CAS  Google Scholar 

  • Gjorgieva Ackova D (2018) Heavy metals and their general toxicity on plants. Plant Sci Today 5(1):15–19

    Article  Google Scholar 

  • Gjorgieva D, Kadifkova-Panovska T, Bačeva K, Stafilov T (2011) Assessment of heavy metal pollution in R. Macedonia using a plant assay. Arch Environ Contam Toxicol 60:233–240. https://doi.org/10.1007/s00244-010-9543-0

  • Glyan’ko AK, Ischenko AA (2010) Structural and functional characteristics of plant NADPH oxidase: a review. Appl Biochem Micro 46:463–471

    Google Scholar 

  • Godbold DL, Kettner C (1991) Lead influences root growth and mineral nutrition of Picea abies seedlings. J Plant Physiol 139:95–99

    Article  CAS  Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. P Natl Acad Sci 100:10118–10123

    Article  CAS  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70(9):1539–1544

    Article  CAS  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    Article  CAS  Google Scholar 

  • Grover P, Rekhadevi P, Danadevi K, Vuyyuri S, Mahboob M, Rahman M (2010) Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health 213(2):99–106

    Article  CAS  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161

    Google Scholar 

  • Gupta M, Rai UN, Tripathi RD, Chandra P (1995) Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (l. f.) Royle. Chemosphere 30:2011–2020

    Article  CAS  Google Scholar 

  • Gupta D, Nicoloso F, Schetinger M, Rossato L, Pereira L, Castro G, Srivastava S, Tripathi R (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172(1):479–484

    Article  CAS  Google Scholar 

  • Gupta D, Huang H, Yang X, Razafindrabe B, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177(1–3):437–444

    Google Scholar 

  • Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Biol Med 29(10):927–945

    Article  CAS  Google Scholar 

  • Habermann E, Crowell K, Janicki P (1983) Lead and other metals can substitute for Ca2+ in calmodulin. Arch Toxicol 54:61–70

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Hammett FS (1928) Studies in the biology of metals. Protoplasma 5(1):535–542

    Article  Google Scholar 

  • Hampp R, Ziegler H, Ziegler I (1973) Influence of lead ions on the activity of enzymes of reductive pentose phosphate pathway. Biochem Physiol Pflanzen 164:588–595

    Article  Google Scholar 

  • Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158

    Article  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs—a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    Article  CAS  Google Scholar 

  • Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Hortensteiner S, Gidoni D, Gal-On A, Goldschmidt EE, Eyal Y (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 19(3):1007–1022

    Article  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    Article  CAS  Google Scholar 

  • Haussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H (1988) Ion and water uptake in relation to root development of Norway spruce (Picea abies (L.) Karst). J Plant Physiol 133:486–491

    Article  Google Scholar 

  • Hawkes SJ (1997) What is a “heavy metal”? J Chem Edu 74:1369–1374. https://doi.org/10.1021/ed074p1374

  • Hertwig B, Streb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553

    Article  CAS  Google Scholar 

  • Hu J, Shi G, Xu Q, Wang X, Yuan Q, Du K (2007) Effects of Pb2+ on the active oxygen scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves. Russ J Plant Physl 54(3):414–419

    Article  CAS  Google Scholar 

  • Huang TL, Huang HJ (2008) ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere 71:1377–1385

    Article  CAS  Google Scholar 

  • Huang HG, Li TK, Tian SK, Gupta DK, Zhang XZ, Yang XE (2008) Role of EDTA in alleviating lead toxicity in accumulator species of Sedum alfredii H. Biores Technol 99(14):6088–6096

    Google Scholar 

  • Huang GY, Wang YS, Ying GG (2011) Cadmium-inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorrhiza), its encoding protein shows metal binding ability. J Exp Mar Biol Ecol 405:128–132

    Article  CAS  Google Scholar 

  • Iqbal J, Mushtaq S (1987) Effect of lead on germination, early seedling growth, soluble protein and acid phosphatase content in Zea mays. Pak J Sci Ind Res 30:853–856

    CAS  Google Scholar 

  • Islam E, Liu D, Li T, Yang X, ** X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154(1–3):914–926

    Google Scholar 

  • Islam E, Yang X, Li T, Liu D, ** X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147(3):806–816

    Article  CAS  Google Scholar 

  • Jana S, Choudhari MA (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90:477–484

    Article  CAS  Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40–40

    Article  Google Scholar 

  • Johnson MS, Eaton JW (1980) Environmental contamination through residual trace metal dispersal from a derelict lead-zinc mine. J Environ Qual 9:175–179

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton, London

    Google Scholar 

  • Kim D, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140(3):922–932

    Article  CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  CAS  Google Scholar 

  • Koeppe DE (1977) The uptake, distribution and effect of cadmium and lead in plants. Sci Total Environ 7:197–205

    Article  CAS  Google Scholar 

  • Koeppe DE, Miller RJ (1970) Lead effects on corn mitochondrial respiration. Science 167:1376–1377

    Article  CAS  Google Scholar 

  • Komjarova I, Blust R (2009) Effect of Na, Ca and pH on simultaneous uptake of Cd, Cu, Ni, Pb, and Zn in the water flea Daphnia magna measured using stable isotopes. Aquat Toxicol 94(2):81–86

    Article  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut 150(2):280–287

    Article  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2008) Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environ Pollut 153(3):548–554

    Article  CAS  Google Scholar 

  • Kosobrukhov A, Knyazeva I, Mudrik V (2004) Plantago major plants responses to increase content of lead in soil: growth and photosynthesis. Plant Growth Regul 42(2):145–151

    Article  CAS  Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res: Fundam Mol Mech Mutagen 570(2):149–161

    Article  CAS  Google Scholar 

  • Krzeslowska M, Lenartowska M, Mellerowicz EJ, Samardakiewicz S, Wozny A (2009) Pectinous cell wall thickenings formation—a response of moss protonemata cells to lead. Environ Exp Bot 65(1):119–131

    Article  CAS  Google Scholar 

  • Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Wozny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable—a remobilization can occur. Environ Pollut 158(1):325–338

    Article  Google Scholar 

  • Lamoreaux RJ, Chaney WR (1978) The effect of cadmium on net photosynthesis, transpiration and dark respiration of excised silver maple leaves. Physiol Plant 43:231–236

    Article  CAS  Google Scholar 

  • Lane SD, Martin ES (1977) A histochemical investigation of lead uptake in Raphanus sativus. New Phytol 79(2):281–286. https://doi.org/10.1111/j.1469-8137.1977.tb02206.x

    Article  CAS  Google Scholar 

  • Lawal O, Sanni A, Ajayi I, Rabiu O (2010) Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II) ions onto the seed husk of Calophyllum inophyllum. J Hazard Mater 177(1–3):829–835

    Article  CAS  Google Scholar 

  • Laxen DPH, Harrison RM (1977) The highway as a source of water pollution: an appraisal of heavy metal lead. Water Res 11:1–11

    Article  CAS  Google Scholar 

  • Lee KC, Cunningham BA, Poulsen GM, Liang JM, Moore RB (1976) Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol Plant 36:4–6

    Article  CAS  Google Scholar 

  • Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836

    Article  CAS  Google Scholar 

  • Levina EN (1972) Obshchaya tosikologiya metallov (General metal toxicology). Meditsyna, Leningrad

    Google Scholar 

  • Liao Y, Chien SC, Wang M, Shen Y, Hung P, Das B (2006) Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere. Chemosphere 65(2):343–351

    Article  CAS  Google Scholar 

  • Liu D, Li T, ** X, Yang X, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50(2):129–140

    Article  CAS  Google Scholar 

  • Liu T, Liu S, Guan H, Ma L, Chen Z, Gu H (2009) Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ Exp Bot 67(2):377–386

    Article  CAS  Google Scholar 

  • Liu X, Peng K, Wang A, Lian C, Shen Z (2010) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78(9):1136–1141

    Google Scholar 

  • López ML, Peralta-Videa JR, Benitez T, Duarte-Gardea M, Gardea-Torresdey JL (2007) Effects of lead, EDTA, and IAA on nutrient uptake by alfalfa plants. J Plant Nutr 30(8):1247–1261

    Article  Google Scholar 

  • Lozano R, Azcon R, Palma JM (1996) SOD and drought stress in Lactua sativa. New Phytol 136:329–331

    Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68(1):1–13

    Article  CAS  Google Scholar 

  • Maitra P, Mukherji S (1977) Effect of lead on nucleic acid and protein contents of rice seedlings and its interaction with IAA and GA3 in different plant systems. Ind J Exp Biol 17:29–31

    Google Scholar 

  • Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30(5):629–637

    Article  Google Scholar 

  • Malkowski E, Kita A, Galas W, Karez W, Michael K (2002) Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentration of potassium and calcium. Plant Growth Regul 37(1):69–76

    Article  CAS  Google Scholar 

  • Malone C, Koeppe DE, Miller RJ (1974) Localization of lead accumulated by corn plants. Plant Physiol 53(3):388–394

    Article  CAS  Google Scholar 

  • Marcato-Romain C, Guiresse M, Cecchi M, Cotelle S, Pinelli E (2009) New direct contact approach to evaluate soil genotoxicity using the Vicia faba micronucleus test. Chemosphere 77(3):345–350

    Article  CAS  Google Scholar 

  • Mench M, Morel JL, Guckert A (1987) Metal binding properties of high molecular weight soluble exudates from maize (Zea mays L.) roots. Biol Fertil Soils 3(3):165–169. https://doi.org/10.1007/BF00255778

  • Mendoza-Cozatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    Article  CAS  Google Scholar 

  • Meyers DER, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153(2):323–332

    Article  CAS  Google Scholar 

  • Mika A, Minibayeva F, Beckett R, Lüthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3:173–193

    Article  CAS  Google Scholar 

  • Miles CD, Brandle JR, Daniel DJ, Chu-Der O, Schnare PD, Uhlik DJ (1972) Inhibition of PS II in isolated chloroplasts by lead. Plant Physiol 49:820–825

    Article  CAS  Google Scholar 

  • Miles CD, Brandle JR, Daniel DJ, Chu-Der O, Schnare PD, Uhlik DJ (1992) Inhibition of photosystem II in isolated chloroplasts by lead. Plant Physiol 49(5):820–825. https://doi.org/10.1104/pp.49.5.820

    Article  Google Scholar 

  • Miller RJ, Biuell JE, Koeppe DE (1973) The effect of cadmium on electron and energy transfer reactions in corn mitochondria. Physiol Plant 28:166–171

    Article  CAS  Google Scholar 

  • Mishra A, Choudhari MA (1998) Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Biol Plant 41:469–473

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi R, Kumar R, Seth C, Gupta D (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65(6):1027–1039

    Google Scholar 

  • Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization ponds. Environ Pollut 98(2):233–238

    Article  CAS  Google Scholar 

  • Mohanty N, Vass I, Demeter S (1989) Copper toxicity affects Photosystem II electron transport at the secondary quinone acceptor, QB. Plant Physiol 90:175–179

    Article  CAS  Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2(1):29–34. https://doi.org/10.1007/BF00638958

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  Google Scholar 

  • Mukherji S, Maitra P (1976) Toxic effects of lead on growth and metabolism of germinating rice (Oryza sativa L.) root tip cells. Ind J Exp Biol 14:519–521

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. https://doi.org/10.1007/s10311-010-0297-8

  • Nas FS, Ali M (2018) The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Eco Environ Sci 3(4):265–268. https://doi.org/10.15406/mojes.2018.03.00098

  • National Toxicology Program (2003) Report on carcinogens: background document for lead and lead compounds. Department of Health and Human Services, Research Triangle Park, NC

    Google Scholar 

  • Obroucheva NV, Bystrova EI, Ivanov VB, Anupova OV, Seregin IV (1998) Root growth responses to lead in young maize seedlings. Plant Soil 200:55–61

    Article  CAS  Google Scholar 

  • Olmos E, Martinez-Solano JR, Piqueras A, Hellin E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2010) Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments. Bioresour Technol 101(14):5667–5676

    Article  CAS  Google Scholar 

  • Pais I, Jones JB (2000) The handbook of trace elements. Saint Lucie Press, Boca Raton, FL, p 223

    Google Scholar 

  • Paivoke AEA (2002) Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environ Exp Bot 48:61–73

    Article  CAS  Google Scholar 

  • Park J, Gu Y, Lee Y, Yang Z, Lee Y (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134:129–136

    Article  CAS  Google Scholar 

  • Park J, Song W-Y, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  Google Scholar 

  • Parys E, Romanowaska E, Siedlecka M, Poskuta J (1998) The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. Acta Physiol Plant 20:313–322

    Article  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223

    Article  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60(2):153–162

    Article  CAS  Google Scholar 

  • Pinelli E, Cambon C, Tronchere H, Chap H, Teissie J, Pipy B (1994) Ca2+-dependent activation of phospholipases C and D from mouse peritoneal macrophages by a selective trigger of Ca2+ influx, c-Hexachlorocyclohexane. Biochem Bioph Res Commun 199:699–705

    Article  CAS  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitao AS, Okamoto OK, Morse D, Coilepicolo P (2003) Heavy-metal induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66(3):507–513

    Article  CAS  Google Scholar 

  • Poskuta JW, Parys E, Romanowaska E (1996) Toxicity of lead to photosynthesis, accumulation of chlorophyll, respiration and growth of Chlorella pyrenoidosa. Protective role of dark respiration. Acta Physiol Plant 18:165–171

    CAS  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165(6):571–579

    Article  CAS  Google Scholar 

  • Pourrut B, Jean S, Silvestre J, Pinelli E (2011a) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mut Res-Gen Tox En 726:123–128

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011b) Lead uptake, toxicity, and detoxification in plants. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 213. Springer, New York, pp 113–136

    Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011c) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Heavy metal stress in plants, pp 121–147

    Google Scholar 

  • Prassad DDK, Prassad ARK (1987) Altered δ-aminolaevulinic acid metabolism by lead and mercury in germinating seedlings of Bajra (Pennisetum typhoideum). J Plant Physiol 127:241–249

    Article  Google Scholar 

  • Przymusinski R, Spychala M, Gwozdz EA (1991) Inorganic lead changes growth polypeptide pattern of lupin roots. Biochem Physiol Pflan 187:51–57

    Article  CAS  Google Scholar 

  • Przymusinski R, Rucinska R, Gwozdz EA (1995) The stress stimulated 16 Kda polypeptide from Lupin roots has properties of cytosolic Cu: Zn-superoxide dismutase. Environ Exp Bot 35:485–495

    Article  CAS  Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1–3):465–474

    Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    CAS  Google Scholar 

  • Qufei L, Fashui H (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res 129(1):251–260

    Article  Google Scholar 

  • Qureshi M, Abdin M, Qadir S, Iqbal M (2007) Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol Plantarum 51(1):121–128

    Article  CAS  Google Scholar 

  • Rahimzadeh MR, Kazemi S, Moghadamnia AA (2017) Cadmium toxicity and treatment: an update. Casp J Intern Med 8(3):135. https://doi.org/10.22088/cjim.8.3.135

  • Rashid A, Bernier M, Pazdernick L, Carpentier L (1991) Interaction of Zn2+ with the donor side of Photosystem II. Photosynth Res 30:123–130

    Article  CAS  Google Scholar 

  • Rashid A, Camm EL, Ekramoddoullah KM (1994) Molecular mechanism of action of Pb and Zn2+ on water oxidizing complex of photosystem II. FEBS Lett 350:296–298

    Article  CAS  Google Scholar 

  • Rebechini HM, Hanzely L (1974) Lead-induced ultrastructural changes in chloroplasts of the hydrophyte Ceratophyllum demersum. Z Pflanzenphysiol 73:377–386

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60(1):97–104

    Google Scholar 

  • Reese RN, Roberts LW (1985) Effects of cadmium on whole cell and mitochondrial respiration in tobacco cell suspension cultures (Nicotiana tobacum L. var. xanthi). J Plant Physiol 120:123–130

    Article  CAS  Google Scholar 

  • Roberts H (2003) Changing patterns in global lead supply and demand. J Power Sourc 116:23–31. https://doi.org/10.1016/S0378-7753(02)00701-2

    Article  CAS  Google Scholar 

  • Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate.’ New Phytol 167(3):665–691

    Article  CAS  Google Scholar 

  • Romanowska E, Igamberdiev AU, Parys E, Gardeström P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol Plant 116(2):148–154

    Article  CAS  Google Scholar 

  • Romanowska E, Pokorska B, Siedlecka M (2005) The effects of oligomycin on content of adenylates in mesophyll protoplasts, chloroplasts and mitochondria from Pb2+ treated pea and barley leaves. Acta Physiol Plant 27(1):29–36

    Article  CAS  Google Scholar 

  • Romanowska E, Wróblewska B, Drozak A, Siedlecka M (2006) High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Plant Physiol Biochem 44(5–6):387–394

    Article  CAS  Google Scholar 

  • Romanowska E, Wróblewska B, Drozak A, Zienkiewicz M, Siedlecka M (2008) Effect of Pb ions on superoxide dismutase and catalase activities in leaves of pea plants grown in high and low irradiance. Biol Plantarum 52(1):80–86

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Rucinska R, Sobkowiak R, Gwózdz EA (2004) Genotoxicity of lead in lupin root cells as evaluated by the comet assay. Cell Mol Biol Lett 9(3):519–528

    CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPHoxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  CAS  Google Scholar 

  • Sammut M, Noack Y, Rose J, Hazemann J, Proux O, Depoux Ziebel M, Fiani E (2010) Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere 78(4):445–450

    Article  CAS  Google Scholar 

  • Sarvari E, Gaspar L, Fodor F, Cseh E, Kropfl K, Varga A, Baron M (2002) Comparison of the effects of effects of Pb treatment on thylakoid development in poplar and cucumber plants. Acta Biol Szeged 46:163–165

    Google Scholar 

  • Sengar RS, Pandey M (1996) Inhibition of chlorophyll biosynthesis by lead in greening Pisum sativum leaf segments. Biol Plant 38:459–462

    Article  CAS  Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Sengar RS, Garg SK, Sengar K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:1–21

    Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544, 606–630

    Article  CAS  Google Scholar 

  • Seregin IV, Pekhov VM, Ivanov VB (2002) Plasmolysis as a tool to reveal lead localization in the apoplast of root cells. Russ J Plant Physiol 49:283–285

    Article  CAS  Google Scholar 

  • Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51(4):525–533

    Article  CAS  Google Scholar 

  • Sersen F, Kralova K, Bumbalova A (1998) Action of mercury on the photosynthetic apparatus of spinach chloroplasts. Photosynthetica 35:551–559

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74(1):78–84

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Article  CAS  Google Scholar 

  • Sieghardt H (1988) Schwermetall- und Nahrelementgehalte von Pflazen und Bodenproben schwermetallhaltiger Halden im Raum Bleiberg in Karnten (Osterreich). II. Holzpflazen. Z Pflazenenernahr Bodenk 151:21–26

    Article  CAS  Google Scholar 

  • Simonovicova M, Huttova J, Mistrik I, Siroka B, Tamas L (2004a) Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions. Plant Growth Regul 44:267–275

    Article  CAS  Google Scholar 

  • Simonovicova M, Tamás L, Huttová J, Mistrík I (2004b) Effect of aluminium on oxidative stress related enzymes activities in barley roots. Biol Plantarum 48:261–266

    Article  CAS  Google Scholar 

  • Simonovicova M, Bocova B, Huttova J, Mistrik I, Tamas L (2005) Effect of cadmium on oxalate oxidase activity in barley roots. Biol Plantarum 60:463–546

    CAS  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  CAS  Google Scholar 

  • Sinha P, Dube B, Srivastava P, Chatterjee C (2006) Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere 65(4):651–656

    Article  CAS  Google Scholar 

  • Stefanov K, Popova I, Kamburova E, Pancheva T, Kimenov G, Kuleva L, Popov S (1993) Lipid and sterol changes in Zea mays caused by lead ions. Phytochemistry 33:47–51

    Article  CAS  Google Scholar 

  • Stefanov K, Seizova K, Popova I, Petkov VL, Kimenov G, Popov S (1995) Effects of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris. J Plant Physiol 147:243–246

    Google Scholar 

  • Subhashini K, Reddy GM (1990) Effect of salt stress on enzyme activities in callus cultures of tolerant and susceptible rice cultivars. Ind J Exp Biol 28:277–279

    CAS  Google Scholar 

  • Tabelin C, Igarashi T (2009) Mechanisms of arsenic and lead release from hydrothermally altered rock. J Hazard Mater 169(1–3):980–990

    Article  CAS  Google Scholar 

  • Talwar PS, Gupta R, Maurya AK, Deswal R (2012) Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase. Plant Physiol Biochem 60:157–164

    Article  CAS  Google Scholar 

  • Tanton TW, Crowdy SH (1971) The distribution of lead chelate in the transpiration stream of higher plants. Pestic Sci 2(5):211–213

    Article  CAS  Google Scholar 

  • Tomulescu IM, Radoviciu EM, Merca VV, Tuduce AD (2004) Effect of copper, zinc and lead and their combinations on the germination capacity of two cereals. J Agric Sci 15

    Google Scholar 

  • Tu Shu I, Brouillette JN (1986) Metal ion inhibition of corn root plasma membrane ATPase. Phytochemistry 26(1):65–69. https://doi.org/10.1016/S0031-9422(00)81482-X

    Google Scholar 

  • Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157(4):1178–1185

    Article  CAS  Google Scholar 

  • Vadas TM, Ahner BA (2009) Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots. Environ Pollut 157(8–9):2558–2563

    Article  CAS  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium and lead. Annu Rev Biochem 41:91–128

    Article  CAS  Google Scholar 

  • Valverde M, Trejo C, Rojas E (2001) Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction? Mutagenesis 16(3):265–270

    Article  CAS  Google Scholar 

  • van Assche F, Clijsters H (1990) Effects of metal on enzyme activity in plants. Plant Cell Environ 13(3):195–206

    Article  Google Scholar 

  • Vega F, Andrade M, Covelo E (2010) Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: comparison of linear regression and tree regression analyses. J Hazard Mater 174(1–3):522–533

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Vodnik D, Jentschke G, Fritz E, Gogala N, Godbold DL (1999) Root-applied cytokinin reduces lead uptake and affects its distribution in Norway spruce seedlings. Physiol Plant 106:75–81

    Article  CAS  Google Scholar 

  • Waite KA, Wallin R, Qualliotine-Mann D, McPhail LC (1997) Phosphatidic acid-mediated phosphorylation of the NADPH-oxidase component p47-phox. Evidence that phosphatidic acid may activate a novel protein kinase. J Biol Chem 272:15569–15578

    Article  CAS  Google Scholar 

  • Walker WM, Miller JE, Hassett JJ (1977) Effect of lead and cadmium upon the calcium, magnesium, potassium and phosphorus concentration in young corn plants. Soil Sci 124:145–151

    Article  CAS  Google Scholar 

  • Wang H, Shan X, Wen B, Owens G, Fang J, Zhang S (2007) Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ Exp Bot 61(3):246–253

    Google Scholar 

  • Wang P, Zhang S, Wang C, Lu J (2012) Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotoxicol Environ Saf 78:28–34

    Article  CAS  Google Scholar 

  • Wierzbicka M (1987) Lead translocation and localization in Allium cepa roots. Can J Bot 65(9):1851–1860

    Article  CAS  Google Scholar 

  • Wierzbicka M (1994) Resumption of mitotic activity in Allium cepa root L. tips during treatment with lead salts. Environ Exp Bot 34:173–180

    Google Scholar 

  • Wierzbicka M (1998) Lead in the apoplast of Allium cepa L. root tips—ultrastructural studies. Plant Sci 133(1):105–119

    Google Scholar 

  • Wierzbicka M (1999) Comparison of lead tolerance in Allium cepa with other plant species. Environ Pollut 104(1):41–52

    Article  CAS  Google Scholar 

  • Wierzbicka MH, Przedpełska E, Ruzik R, Ouerdane L, Połec-Pawlak K, Jarosz M, Szpunar J, Szakiel A (2007) Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231(1):99–111

    Google Scholar 

  • Wong JWC (1996) Heavy metal contents in vegetables and marketgarden soils in Hong Kong. Environ Technol 17:407–414. https://doi.org/10.1080/09593331708616400

    Article  CAS  Google Scholar 

  • Wozny A, Zatorska B, Mlodzianowski F (1982) Influence of lead on the development of lupin seedlings and ultrastructural localization of this metal in the roots. Acta Soc Bot Pol 51:345–351

    Article  CAS  Google Scholar 

  • **ong Z, Zhao F, Li M (2006) Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environ Toxicol 21(2):147–153

    Google Scholar 

  • Xu Y, Zhou G, Zhou L, Li Y, Liu J (2007) Expression patterns of the rice class I metallothionein gene family in response to lead stress in rice seedlings and functional complementation of its members in lead-sensitive yeast cells. Chin Sci Bull 52:2203–2209

    Article  CAS  Google Scholar 

  • Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yang Y-Y, Jung J-Y, Song W-Y, Suh HS, Lee Y (2000) Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol 124:1019–1026

    Article  CAS  Google Scholar 

  • Yan ZZ, Ke L, Tam NFY (2010) Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquat Bot 92(2):112–118

    Google Scholar 

  • Yu ZL, Zhang JG, Wang XC, Chen J (2008) Excessive copper Iinduces the production of reactive oxygen species, which is mediated by phospholipase D, nicotinamide adenine dinucleotide phosphate oxidase and antioxidant systems. J Integr Plant Biol 50:157–167

    Google Scholar 

  • Zaier H, Ghnaya T, Rejeb KB, Lakhdar A, Rejeb S, Jemal F (2010) Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Biores Technol 101(11):3978–3983

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, D., Srivastava, N. (2023). Molecular Mechanism of Lead Toxicity and Tolerance in Plants. In: Kumar, N., Jha, A.K. (eds) Lead Toxicity: Challenges and Solution. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-37327-5_12

Download citation

Publish with us

Policies and ethics

Navigation