Lead Removal from Aqueous Solutions Using Different Biosorbents

  • Chapter
  • First Online:
Lead Toxicity: Challenges and Solution

Abstract

Lead is a heavy metal that causes toxic effects on the gastrointestinal tract, renal system, central and peripheral nervous system, as well as interference with enzymatic systems involved in the synthesis of the heme group, so it is important to try to eliminate it from the different contaminated ecological niches. There are reports that mention that fungi have heavy metal uptake abilities, due to some components of their cell wall. In this work, the biosorption of lead by 18 fungal biomasses of fungi isolated from soils of a gas station in the industrial zone of San Luis Potosí, S.L.P., México was studied, finding that the biomasses of Penicillium sp-1, Mucor sp., Paecilomyces sp-1 and Penicillium sp-2, were the most efficient to remove the metal (determined spectrophotometrically at 510 nm using dithizone as a complexing agent), with the following removal percentages, 63%, 63%, 60% and 59%, respectively at a pH of 4.0, 28 °C and 24 h of incubation, 100 mg/L of lead (II), 100 rpm, and 1.0 g/100 mL of fungal biomass. This technology can provide faster and more reliable methods to optimize energy resources from biological sources. Too, we studied the capacity of removal of this metal by four fungal strains of Penicillium sp., isolated of the same place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Rodríguez I, Rodríguez Pérez AS, Martínez Juárez VM, Cárdenas González JF, Navarro Castillo JF, Torre Bouscoulet ME (2016) Biosorption of lead (II) from aqueous solutions by three fungal biomasses. Asian J Sci Technol 07(07):3246–3251. http://www.journalajst.com

  • Anayurt RA, Sari A, Tuzen M (2009) Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius Scrobiculatus) biomass. Chem Eng J 151:255–261. https://doi.org/10.1016/j.cej.2009.03.002

    Article  CAS  Google Scholar 

  • Apaza-Aquino H, Valderrama Valencia MRE (2020) Biorremediación de plomo mediante la biomasa de Rhizopus sp. Revista Universidad y Cultura. Universidad Cesar Vallejo 9(2):1–10. https://orcid.org/0000-0002-1592-7461

  • Arbaiza-Peña AK, Grober Panduro-Isco G, Díaz-Zúñiga EJ, Guadalupe-Baylon NK, Angulo-García N, Iannacone J (2022) Composición elemental y de metales pesados en los residuos de palma en la Amazonia Peruana. Trop Subtrop Agroecosyst 25(083):1–11. https://doi.org/10.56369/tsaes.3967

  • ATSDR (Agency for Toxic Substance and Disease Registry) (2013) Priority list of hazardous substances. http://www.atsdr.cdc.gov/SPL/index.html. Accessed 19 Dec 2022

  • Bandurska K, Krupa P, Berdowska A, Jatulewicz I, Zawierucha I (2021) Mycoremediation of soil contaminated with cadmium and lead by Trichoderma sp. Ecol Chem Eng 28(2):277–286. https://doi.org/10.2478/eces-2021-0020

    Article  CAS  Google Scholar 

  • Bayrak G, Idil N, Percin I (2023) Penicillium chrysogenum-loaded hybrid cryogel discs for heavy metal removal. Chem Pap. https://doi.org/10.1007/s11696-023-02752-0

    Article  Google Scholar 

  • Calderón Salinas JV, Maldonado Vega M (2008) Contaminación e intoxicación por plomo. Trillas, D.F., México, pp 68–71

    Google Scholar 

  • Castanho NRCM, de Oliveira RA, Batista BL, Freire BM, Lange C, Lopes AM, Jozala AF, Grotto D (2021) Comparative study on lead and copper biosorption using three bioproducts from edible mushrooms residues. J Fungi 7(441):1–12. https://doi.org/10.3390/jof7060441

    Article  CAS  Google Scholar 

  • Chandrasekhara Ch, Ray JG (2019) Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicol Environ Saf 171:26–36. https://doi.org/10.1016/j.ecoenv.2018.12.058

  • Chang J, Zhang H, Cheng H, Tan Y, Chang M, Cao Y, Huang F, Zhang G, Yan M (2020) Spent Ganoderma lucidum substrate derived biochar as a new bio-adsorbent for Pb2+/Cd2+ removal in water. Chemosphere 241:125121. https://doi.org/10.1016/j.chemosphere.2019.125121. Epub 2019 Oct 14 PMID: 31683424

    Article  CAS  Google Scholar 

  • de Wet MMM, Brink HG (2021) Lead biosorption characterisation of Aspergillus piperis. Sustainability 13(13169):1–18. https://doi.org/10.3390/su132313169

  • Discuviche M, Gomezcaceres L, Vergara C, De Hoyos K (2023) Metales pesados en músculo de Caquetaia kraussii, Sorubim cuspicaudus, Cyphocharax magdalenae y Prochilodus magdalenae y métodos de cocción: una mirada eco toxicológica en el norte de Colombia. Ciencia Latina Revista Científica Multidisciplinar 6(6):11349–11377. https://doi.org/10.37811/cl_rcm.v6i6.4204

  • Domínguez-Zúñiga LI, Puente-Valenzuela CT, Estrada-Arellano JR, Aguirre-Acosta E, Aguillón-Gutiérrez DR (2022) Concentración de metales pesados en hongos de la zona metropolitana de la Comarca Lagunera, México. Scientia Fungorum 22(e1389):1–10. https://doi.org/10.33885/sf.2021.52.1389

    Article  Google Scholar 

  • Eliescu A, Georgescu AA, Nicolescu CM, Bumbac M, Cioateră N, Mureșeanu M (2020) Biosorption of Pb(II) from aqueous solution using mushroom (Pleurotus ostreatus) biomass and spent mushroom substrate. Anal Lett 5(14):2292–2319. https://doi.org/10.1080/00032719.2020.1740722

    Article  CAS  Google Scholar 

  • Farooq U, Ain Khan M, Athar M, Sakina M, Ahmad M (2012) Environmentally benign urea-modified Triticum aestivum biomass for lead (II) elimination from aqueous solutions. Clean 38(1):49–56. https://doi.org/10.1002/clen.200900136

    Article  CAS  Google Scholar 

  • Guillén-Mendoza D, Escate-Lazo F, Rivera-Abbiati F, Guillén-Pinto D (2013) Plomo en sangre de cordón umbilical de neonatos nacidos en un hospital del norte de Lima. Revista Peruana Medicina Experimental Salud Publica 30(2):224–228

    Google Scholar 

  • Gómez-Aguilar DL, Esteban-Muñoz JA, Baracaldo-Guzmán D (2020) Tecnologías no convencionales para la remoción de plomo presente en aguas residuales: una revisión bibliográfica 2010–2019. Tecnura 24(64):97–116. https://doi.org/10.14483/22487638.15849

  • Gouda SA, Taha A (2023) Biosorption of heavy metals as a new alternative method for wastewater treatment: a review. Egypt J Aquat Biol Fish 27(2):135–153. www.ejabf.journals.ekb.eg

  • Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington, D.C., pp 3–83, 3–107, 1–49, 1–50

    Google Scholar 

  • Hanif MA, Bhatti HN, Bhatti IA, Asghar M (2011) Biosorption of Cr(III) and Cr(VI) by newly isolated white rot fungi: batch and column studies. Asian J Chem 23(8):3375–3383. https://asianpubs.org/index.php/ajchem/article/view/10725

  • Huang H, Cao L, Wan Y, Zhang R, Wang W (2012) Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions. Appl Microbiol Biotechnol 96:829–840. https://doi.org/10.1007/s00253-011-3846-6

    Article  CAS  Google Scholar 

  • Hussain SF, Khazaal DS, Hatif ZH (2020) Biosorption of lead and chromium ions by using Penicillium digitatum (Pers.) Sacc. from industrial water. Iraqi J Sci 61(8):1880–1886. https://doi.org/10.24996/ijs.2020.61.8.4

  • **g Y, Li Z, Li Y, Lei G, Li L, Yang X, Zhang Z, Yang W (2021) The ability of edible of fungi residue to remove lead in wastewater. Front Environ Sci 9(723087):1–9. https://doi.org/10.3389/fenvs.2021.723087

  • Kamaria A, Wan Ngah WS (2009) Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan. Colloids Surf B Biointerfaces 73:257–266. https://doi.org/10.1016/j.colsurfb.2009.05.024

    Article  CAS  Google Scholar 

  • Kirk MP, Cannon FP, David CJ, Stalpers AJ (2001) Dictionary of the fungi. CABI Publishing

    Google Scholar 

  • Lafond J, Hamel A, Takser L, Vaillancourt C, Mergler D (2004) Low environmental contamination by lead in pregnant women: effect on calcium transfer in human placental syncytiotrophoblasts. J Toxicol Environ Health 67:1069–1079. https://doi.org/10.1080/15287390490452263

    Article  CAS  Google Scholar 

  • Lee K, Buckley L, Campbell CC (1975) An aminoacid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. J Med Vet Mycol 13(32):148–153. https://doi.org/10.1080/00362177585190271

    Article  CAS  Google Scholar 

  • Lomelí-Legaspi E, Lozano EA, Martínez-Coronel J (2022) Intoxicación por plomo en un paciente con esquirlas retenidas en articulación. Medicina Interna de México 38(6):1290–1295. https://doi.org/10.24245/mim.v38i6.4678

  • Luo D, Qiang S, Geng R, Shi L, Song J, Fan Q (2022) Mechanistic study for mutual interactions of Pb2+ and Trichoderma viride. Ecotoxicol Environ Saf 223:1–9. https://doi.org/10.1016/j.ecoenv.2022.113310

  • Majolagbe ON, Ariyo OG, Bello OS, Adeyeni EG, Owoseni AA, Oluranti OO (2023) Mycoremediation of heavy metals from electronic waste polluted water using indigenous fungi and its implications. J Adv Microbiol 23(4):15–27, Article no. JAMB.97632

    Google Scholar 

  • Mancipe Calderón NG, Arias Rodríguez S (2020) Remoción de mercurio y plomo contenido en efluentes de agua por el Pleurotus ostreatus inmovilizado en diferentes materiales. Tesis licenciatura. Ingeniero Químico. Facultad de Ingeniería. Universidad de los Andes. Bogotá, Colombia. http://hdl.handle.net/1992/48760

  • Morales-Fonseca D, Ruíz-Tovar K, Martínez-Salgado MM, Soto-Guzmán AB, Falcony-Guajardo C, Rodríguez Vázquez R, Pedroza-Rodríguez AM (2010) Desarrollo de un bioadsorbente laminar con Phanerochaete chrysosporium hipertolerante al cadmio, al níquel y al plomo para el tratamiento de aguas. Rev Iberoam Micol 27(3):111–118. https://doi.org/10.1016/j.riam.2010.02.002

    Article  Google Scholar 

  • Moreno-Rivas SC, Clamont-Montfort GR (2018) Descontaminación de arsénico, cadmio y plomo en agua por biosorción con Saccharomyces cerevisiae. TIP. Revista Especializada en Ciencias Químico-Biológicas 2(2):51–69. https://doi.org/10.22201/fesz.23958723e.2018.0.155

  • Naranjo-Jiménez C, Wingching-Jones R (2023) Arsénico, cadmio, mercurio y plomo en alimentos importados para mascotas en Costa Rica. Agronomia Mesoamericana 34(1):1–13. Artículo 48399. https://doi.org/10.15517/am.v34i1.48399

  • Navarro Moreno LG, Vázquez Velasco L, Rangel Cordero A, González JM (2022) Contaminación y hongos: resistencia a metales pesados. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades 3(2):215–232. https://doi.org/10.56712/latam.v3i2.76

  • Mushtaq S, Bareen FE, Tayyeb A (2023) Equilibrium kinetics and thermodynamic studies on biosorption of heavy metals by metal-resistant strains of Trichoderma isolated from tannery solid waste. Environ Sci Pollut Res 30:10925–10954. https://doi.org/10.1007/s11356-022-22860-w

    Article  CAS  Google Scholar 

  • Paria K, Pyne S, Chakraborty SK (2022) Optimization of heavy metal (lead) remedial activities of fungi Aspergillus penicillioides (F12) through extra cellular polymeric substances. Chemosphere 286(3):1–12, 131874. https://doi.org/10.1016/j.chemosphere.2021.131874

  • Santos MPO, Santos MVN, Matos RS, Van Der Maas AS, Faria MCS, Batista BL, Rodrigues JL, Bomfeti CA (2022) Pleurotus strains with remediation potential to remove toxic metals from Doce River contaminated by Samarco dam mine. Int J Environ Sci Technol 19:6625–6638. https://doi.org/10.1007/s13762-021-03597-4

    Article  CAS  Google Scholar 

  • Senol ZM, Gül DG, Gurbanov R, Şimşek S (2021) Optimization the removal of lead ions by fungi: explanation of the mycosorption mechanism. J Environ Chem Eng 9(2):104760. https://doi.org/10.1016/j.jece.2020.104760

    Article  CAS  Google Scholar 

  • Shan B, Hao R, Xu X, Li J, Zhang J, Li Y, Ye Y, Lu A (2022) Efficient immobilization behavior and mechanism investigation of Pb(II) by Aspergillus tubingensis. Biotechnol Lett 44(5–6):741–753. https://doi.org/10.1007/s10529-022-03253-y. PMID: 35538334

    Article  CAS  Google Scholar 

  • Tarfeen N, Nisa KI, Hamid B, Bashir Z, Yatoo AM, Dar MA, Mohiddin FA, Amin Z, Ahmad RA, Sayyed RZ (2022) Microbial remediation: a promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: a review. Processes 10(1358):1–27. https://doi.org/10.3390/pr10071358

    Article  CAS  Google Scholar 

  • Tellez-Rojo MM, Bautista-Arredondo LF, Trejo-Valdivia B, Tamayo-Ortiz M, Estrada-Sánchez D, Kraiem R, Pantic I, Mercado-García A, Romero-Martínez M, Shamah-Levy T, Fuller R, Cantoral A (2020) Análisis de la distribución nacional de intoxicación por plomo en niños de 1 a 4 años. Implicaciones para la política pública en México. Salud Pública de Mexico 62:627–636. https://doi.org/10.21149/11550

  • Tian D, Cheng X, Wang L, Hu J, Zhou N, **a J, Xu M, Zhang L, Gao H, Ye X, Zhang C (2022) Remediation of lead-contaminated water by red yeast and different types of phosphate. Front Bioeng Biotechnol 21(10):775058. https://doi.org/10.3389/fbioe.2022.775058.PMID:35387302;PMCID:PMC8979109

    Article  Google Scholar 

  • Vallejo Aguilar MLA, Marín Castro MA, Ramos Cassellis ME, Silva Gómez SE, Ibarra Cantún D, Tamariz Flores JV (2021) Biosorption and tolerance of Pb, Cr and Cd by the biomass of Pleurotus ostreatus (Jacq. Ex Fr.) P. Kumm. Revista Mexicana Ciencias Agrícolas 12(2):275–289. https://doi.org/10.29312/remexca.v12i2.2687.

  • Zghair FS, Jebar MS (2020) Bioremoval of lead by some fungi isolated from soil. Plant Arch 20(2):6806–6808. ID: 231831610

    Google Scholar 

  • Zúñiga-Martínez S, Ibáñez-Hernández OF, Salas Plata-Mendoza J, Flores-Tavizón E, Velázquez-Angulo G (2022) Métodos de remoción de metals en aguas para consumo humano. Una revision. CULCYT. Cultura Científica y Tecnológica 19(2):12–27. https://doi.org/10.20983/culcyt.2022.2.3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Acosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acosta, I., Rodríguez, A., Cárdenas, J.F., Martínez, V.M., Contreras, D. (2023). Lead Removal from Aqueous Solutions Using Different Biosorbents. In: Kumar, N., Jha, A.K. (eds) Lead Toxicity: Challenges and Solution. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-37327-5_11

Download citation

Publish with us

Policies and ethics

Navigation