Functionalized Strategies of Superparamagnetic Materials

  • Chapter
  • First Online:
Superparamagnetic Materials for Cancer Medicine

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 109 Accesses

Abstract

Superparamagnetism occurs only in nanocrystals. Superparamagnetic nanomaterials (SPNs) need to be assembled into complex materials, so as to use in particular applications. SPNs must display collective properties such as increased magnetic saturation, biocompatibility, stability, and reactive surface. SPNs are the most considered nanomaterials for subsurface applications. Surfaces of SPNs can be altered by various organic or inorganic materials, like polymers, silica, metals, biological molecules, etc. The main challenges and strategies for the synthesis and properties of surface functionalized SPNs are systematically discussed in this chapter as SPNs are extensively used in numerous medicinal purposes, for example, for early detection of diseases like diabetes and various types of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amara D, Margel S (2012) Synthesis and characterization of superparamagnetic core–shell micrometresized particles of narrow size distribution by a swelling process. J Mater Chem 22:9268

    Article  CAS  Google Scholar 

  • Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E (2009) Nano Lett 9:4042–4048

    Article  CAS  Google Scholar 

  • Bae H, Ahmad T, Rhee I, Chang Y, ** S-U, Hong S (2012) Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett 7:44

    Article  Google Scholar 

  • Bannwarth MB, Kazer SW, Ulrich S, Glasser G, Crespy D, Landfester K (2013) Well-defined nanofibers with tunable morphology from spherical colloidal building blocks. Angew Chem Int Ed 52:10107–10111

    Article  CAS  Google Scholar 

  • Bannwarth MB, Camerlo A, Ulrich S, Jakob G, Fortunato G, Rossi RM, Boesel LF (2015a) Ellipsoid-shaped superparamagnetic nanoclusters through emulsion electrospinning. Chem Commun 51:3758–3761

    Article  CAS  Google Scholar 

  • Bannwarth MB, Utech S, Ebert S, Weitz DA, Crespy D, Landfester K (2015b) Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles. ACS Nano 9:2720–2728

    Article  CAS  Google Scholar 

  • Bao N, Gupta A (2011) Self-assembly of superparamagnetic nanoparticles. J Mater Res 26:111–121

    Article  CAS  Google Scholar 

  • Barick KC, Aslam M, Lin Y-P, Bahadur D, Prasad PV, Dravid VP (2009a) J Mater Chem 19:7023

    Article  CAS  Google Scholar 

  • Barick KC, Aslam M, Prasad PV, Dravid VP, Bahadur D (2009b) J Magn Magn Mater 321:1529–1532

    Article  CAS  Google Scholar 

  • Barnett CM, Gueorguieva M, Lees MR, McGarvey DJ, Darton RJ, Hoskins C (2012) Effect of the hybrid composition on the physicochemical properties and morphology of iron oxide-gold nanoparticles. J Nanopart Res 14:1170

    Article  Google Scholar 

  • Behrens S (2011) Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions. Nanoscale 3:877

    Article  CAS  Google Scholar 

  • Bhattarai SR, Bahadur KCR, Aryal S, Khil MS, Kim HY (2007) Carbohydr Polym 69:467–477

    Article  CAS  Google Scholar 

  • Bin Na H, Lee IS, Seo H, Il Park Y, Lee JH, Kim S-W, Hyeon T (2007) Chem Commun: 5167–5169

    Google Scholar 

  • Bogdanov AA, Klibanov AL, Torchilin VP (1988) FEBS Lett 231:381–384

    Article  CAS  Google Scholar 

  • Bohara RA, Thorat ND, Yadav HM, Pawar SH (2014) New J Chem 38:2979

    Article  CAS  Google Scholar 

  • Bohara RA, Thoratb ND, Pawar SH* (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 6: 43989

    Google Scholar 

  • Bychkova AV, Sorokina ON, Rosenfeld MA, Kovarski AL (2012) Russ Chem Rev 81:1026–1050

    Article  Google Scholar 

  • Cao Z, Yang L, Ye Q, Cui Q, Qi D, Ziener U (2013) Transition-metal salt-containing silica nanocapsules elaborated via salt-induced interfacial deposition in inverse miniemulsions as precursor to functional hollow silica particles. Langmuir 29:6509

    Article  CAS  Google Scholar 

  • Chandra S, Barick KC, Bahadur D (2011) Adv. Drug Delivery Rev. 63:1267–1281

    Article  CAS  Google Scholar 

  • Chastellian, Petri A, Hofman H (2004) J Colloid Interface Sci 278: 353

    Google Scholar 

  • Chen WH, Yi PW, Zhang Y, Zhang LM, Deng ZW, Zhang ZJ (2011) Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl Mater Interfaces 3:4085

    Article  CAS  Google Scholar 

  • Chen Y, Yin Q, Ji X, Zhang S, Chen H, Zheng Y, Sun Y, Qu H, Wang Z, Li Y, Wang X, Zhang K, Zhang L, Shi J (2012) Biomaterials 33:7126–7137

    Article  CAS  Google Scholar 

  • Chen X-Z, Hoop M, Mushtaq F, Siringil E, Hu C, Nelson BJ, Pane S (2017) Recent developments in magnetically driven micro- ́ and nanorobots. Appl Mater Today 9:37–48

    Article  Google Scholar 

  • Chen, Guo Z, Wang H-B, Gong M, Kong X-K, **a P, Chen Q-W (2013) Biomaterials 34: 571–581

    Google Scholar 

  • Cheng K, Peng S, Xu C, Sun S (2009) J Am Chem Soc 131:10637–10644

    Article  CAS  Google Scholar 

  • Chiang IC, Chen DH (2009) Structural characterization and self-assembly into superlattices of iron oxide-gold core–shell nanoparticles synthesized via a hightemperature organometallic route. Nanotechnology 20:015602

    Article  Google Scholar 

  • Chu X, Yu J, Hou Y-L (2015) Chin Phys B 24:014704

    Article  Google Scholar 

  • Cole AJ, David AE, Wang J, Galbán CJ, Yang VC (2011) Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomater 32:6291

    Article  CAS  Google Scholar 

  • Condomitti U, Almeida SN, Silveira Jr. AT, de Melo FM, Toma HE (2018) Green processing of strategic elements based on magnetic nanohydrometallurgy. Braz Chem Soc 29(5): 948–959

    Google Scholar 

  • Czakler M, Artner C, Schubert U (2014) Eur J Inorg Chem 2014:2038–2045

    Article  CAS  Google Scholar 

  • Daniel-da-Silva AL, Moreira J, Neto R, Estrada AC, Gil AM, Trindade T (2012) Impact of magnetic nanofillers in the swelling and release properties of κ-carrageenan hydrogel nanocomposites. Carbohydr Polym 87:328–335

    Article  CAS  Google Scholar 

  • Darbandi M, Stromberg F, Landers J, Reckers N, Sanyal B, Keune W, Wende H (2012) Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J Phys D: Appl Phys 45:195001

    Article  Google Scholar 

  • Derjaguin B, Landau L (1993) Prog Surf Sci 43:30–59

    Article  Google Scholar 

  • Diller E, Sitti M (2014) Three dimensional programmable assembly by untethered magnetic robotic micro grippers. Adv Funct Mater 24:4397–4404

    Article  CAS  Google Scholar 

  • Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: The silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572

    Article  CAS  Google Scholar 

  • Douadi-Masrouki S, Frka-Petesic B, Save M, Charleux B, Cabuil V, Sandre O (2010) Incorporation of magnetic nanoparticles into lamellar polystyrene-b-poly(n-butyl methacrylate) diblock copolymer films: influence of the chain end-groups on nanostructuration. Polymer 51:4673

    Article  CAS  Google Scholar 

  • Du PF, Song LX, **ong J, ** ZQ, Chen JJ, Gao LH, Wang NY (2011) J Nanosci Nanotechnol 11:7723–7728

    Article  CAS  Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–1762

    Article  CAS  Google Scholar 

  • El-Sherif H, El-Masry M, Emira HS (2010) Magnetic polymer composite particles via in situ inverse miniemulsion polymerization process. J Macromol Sci A 47:1096

    Article  CAS  Google Scholar 

  • Erathodiyil N, Ying JY (2011) Acc Chem Res 44:925–935

    Article  CAS  Google Scholar 

  • Fan XJ, Jiao GZ, Zhao W, ** PF, Li X (2013) Magnetic Fe3O4-graphene composites as targeted drug nanocarriers for pH-activated release. Nanoscale 5:1143

    Article  Google Scholar 

  • Fang C, Bhattarai N, Sun C, Zhang M (2009) Small 5:1637–1641

    Article  CAS  Google Scholar 

  • Finotelli PV, Morales MA, Rocha-Le˜ao MH, Baggio-Saitovitch EM, Rossi AM (2004) Mater Sci Eng, C 24: 625–629

    Google Scholar 

  • Fournier C, Leonard M, Le Coq-Leonard I, Dellacherie E (1995) Langmuir 11:2344–2347

    Article  CAS  Google Scholar 

  • Fritz G, Sch¨adler V, Willenbacher N, Wagner NJ (2002) Langmuir 18: 6381–6390

    Google Scholar 

  • Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF (2005) J Magn Magn Mater 289:439–441

    Article  CAS  Google Scholar 

  • Gao M, Kuang M, Li L, Liu M, Wang L, Song Y (2018) Printing 1D assembly array of single particle resolution for magnetosensing. Small 14:1800117

    Article  Google Scholar 

  • Ge J, Hu Y, Biasini M, Beyermann WP, Yin Y (2007) Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed 46: 4342−4345

    Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Nanotechnology 18:285604

    Article  Google Scholar 

  • Goon IY, Lai LMH, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shellprotected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem Mater 21:673

    Article  CAS  Google Scholar 

  • Gowd GS, Patra MK, Mathew M, Shukla A, Songara S, Vadera SR, Kumar N (2013) Synthesis of Fe3O4@Y2O3: Eu3+ core–shell multifunctional nanoparticles and their magnetic and luminescence properties. Opt Mater 35:1685

    Article  CAS  Google Scholar 

  • Gu HW, Zheng RK, Zhang XX, Xu B (2004) Facile onepot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664

    Article  CAS  Google Scholar 

  • Gunay M, Baykal A, Sozeri H (2012) J Supercond Novel Magn 25:2415–2420

    Article  Google Scholar 

  • Gunn J, Wallen H, Veiseh O, Sun C, Fang C, Cao J, Yee C, Zhang M (2008) Small 4:712–715

    Article  CAS  Google Scholar 

  • Guo S, Dong S, Wang E (2009) A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures. Chem Eur J 15:2416

    Article  CAS  Google Scholar 

  • Guzman-Lastra F, Kaiser A, Lo ́ ̈wen H (2016) Fission and fusion scenarios for magnetic microswimmer clusters. Nat Commun 7(13519)

    Google Scholar 

  • Hao R, **ng R, Xu Z, Hou Y, Gao S, Sun S (2010) Adv Mater 22:2729–2742

    Article  CAS  Google Scholar 

  • Hee Kim E, Sook Lee H, Kook Kwak B, Kim B-K (2005) J Magn Magn Mater 289: 328–330

    Google Scholar 

  • Hu W, Lum GZ, Mastrangeli M, Sitti M (2018) Small-scale softbodied robot with multimodal locomotion. Nature 554:81–85

    Article  CAS  Google Scholar 

  • Im SH, Herricks T, Lee YT, **a Y (2005) Chem Phys Lett 401:19–23

    Article  CAS  Google Scholar 

  • Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, Chen W, Griffioen AW, Fayad ZA, Mulder WJ (2009) Iron oxide core oil-inwater emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomater 30:6947

    Article  CAS  Google Scholar 

  • Jiang J, Gu H, Shao H, Devlin E, Papaefthymiou GC, Ying JY (2008) Adv Mater 20:4403–4407

    Article  CAS  Google Scholar 

  • Jordan J, Kumar CSSR, Theegala C (2011) J. Mol. Catal. B:enzym. 68:139–146

    Article  CAS  Google Scholar 

  • Joseph J, Nishad KK, Sharma M, Gupta DK, Singh RR, Pandey RK (2012) Fe3O4 and CdS based bifunctional core–shell nanostructure. Mater Res Bull 47:1471

    Article  CAS  Google Scholar 

  • Kang HW, Josephson L, Petrovsky A, Weissleder R, Bogdanov A (2002) Bioconjugate Chem 13:122–127

    Article  CAS  Google Scholar 

  • Kashevsky BE, Agabekov VE, Kashevsky SB, Kekalo KA, Manina EY, Prokhorov IV, Ulashchik VS (2008) Particuology 6:322–333

    Article  CAS  Google Scholar 

  • Kim EH, Ahn Y, Lee HS (2007) J Alloys Compd 434–435:633–636

    Article  Google Scholar 

  • Kim M-J, Jang D-H, Lee Y-I, Jung HS, Lee H-J, Choa Y-H (2011) J Nanosci Nanotechnol 11:889–893

    Article  CAS  Google Scholar 

  • Kim D-H, Vitol EA, Liu J, Balasubramanian S, Gosztola DJ, Cohen EE, Novosad V, Rozhkova EA (2013) Langmuir 29:7425–7432

    Article  CAS  Google Scholar 

  • Kirui DK, Rey DA, Batt CA (2010) Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 21:105105

    Article  Google Scholar 

  • Klünker M, Nawaz Tahir M, Dören R, Deuker M, Komforth P, Plana-Ruiz S, Barton B, Shylin SI, Ksenofontov DV, Panthöfer M (2018) Iron oxide superparticles with enhanced MRI performance by solution phase epitaxial growth. Chem Mater 30:4277

    Article  Google Scholar 

  • Kostopoulou A, Lappas A (2015) Colloidal magnetic nanocrystal clusters: Variable length-scale interaction mechanisms, synergetic functionalities and technological advantages. Nanotechnol Rev 4:595–624

    Article  CAS  Google Scholar 

  • Kralj S, Makovec D (2015) Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano 9:9700–9707

    Article  CAS  Google Scholar 

  • Kreller DI, Gibson G, Novak W, Van Loon GW, Horton JH (2003) Colloids Surf, A 212: 249–264

    Google Scholar 

  • Kroll E, Winnik FM, Ziolo RF (1996) Chem Mater 8:1594–1596

    Article  CAS  Google Scholar 

  • Kumar S, Jana AK, Maiti M, Dhamija I (2014) J Nanopart Res 16:2233

    Article  Google Scholar 

  • Lai Y, Yin W, Liu J, ** R, Zhan J (2009) Nanoscale Res Lett 5:302–307

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Chem Rev 108: 2064–2110

    Google Scholar 

  • Lee KM, Kim S-G, Kim W-S, Kim SS (2002) Korean J Chem Eng 19:480–485

    Article  CAS  Google Scholar 

  • Lee H, Kim J, Kim J, Chung SE, Choi S-E, Kwon S (2011) Programming magnetic anisotropy in polymeric microactuators. Nat Mater 10:747–752

    Article  Google Scholar 

  • Lee N et al (2012) Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and x-ray computed tomography. J Am Chem Soc 134:10309

    Article  CAS  Google Scholar 

  • Lee JS, Cha JM, Yoon HY, Lee J-K, Kim YK (2015) Magnetic multi-granule nanoclusters: a model system that exhibits universal size effect of magnetic coercivity. Sci Rep 5:12135

    Article  Google Scholar 

  • Lee HS, Hee Kim E, Shao H, Kook Kwak B (2005) J Magn Magn Mater 293: 102–105

    Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Nat Biotechnol 18:410–414

    Article  CAS  Google Scholar 

  • Li N, Binder WH (2011) J Mater Chem 21:16717

    Article  CAS  Google Scholar 

  • Li SK, Huang FZ, Wang Y, Shen YH, Qiu LG, **e AJ, Xu SJ (2011) Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: Synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants. J Mater Chem 21:7459

    Article  CAS  Google Scholar 

  • Li XY, Wang X, Song SY, Liu DP, Zhang HJ (2012) Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites: Stable, recyclable, and magnetically separable catalysts. Chem Eur J 18:7601

    Article  CAS  Google Scholar 

  • Li J, de Á vila BE-F, Gao W, Zhang L, Wang J (2017) Micro/Nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot 2(eaam6431)

    Google Scholar 

  • Liang JJ, Huang Y, Oh JY, Kozlov M, Sui D, Fang SL, Baughman RH, Ma YF, Chen YS (2011) Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv Funct Mater 21:3778

    Article  CAS  Google Scholar 

  • Lin J, Zhou W, Kumbhar A, Wiemann J, Fang J, Carpenter EE, O’Connor CJ (2001) J Solid State Chem 159:26–31

    Article  CAS  Google Scholar 

  • Liu Y, Zhang B, Yan B (2011) Int J Mol Sci 12:4395–4413

    Article  CAS  Google Scholar 

  • Liu L, **ao L, Zhu H-Y, Shi X-W (2013a) Studies on interaction and illumination damage of CS-Fe3O4@ZnS: Mn to bovine serum albumin. J Nanopart Res 15:1394

    Article  Google Scholar 

  • Liu YW, Guan MX, Feng L, Deng SL, Bao JF, **e SY, Chen Z, Huang RB, Zheng LS (2013b) Facile and straightforward synthesis of superparamagnetic reduced graphene oxide-Fe3O4 hybrid composite by a solvothermal reaction. Nanotechnology 24:025604

    Article  Google Scholar 

  • Llanes F, Ryan DH, Marchessault RH (2000) Int J Biol Macromol 27:35–40

    Article  CAS  Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H (2008) Nanomedicine 3:703–717

    Article  CAS  Google Scholar 

  • Lu CC, Quan ZS, Sur JC, Kim SH, Lee CH, Chai KY (2010) One-pot fabrication of carboxyl-functionalized biocompatible magnetic nanocrystals for conjugation with targeting agents. New J Chem 34:2040

    Article  CAS  Google Scholar 

  • Luo SR, Chai F, Zhang LY, Wang CG, Li L, Liu XC, Su ZM (2012) Facile and fast synthesis of urchin-shaped Fe3O4@Bi2S3 core–shell hierarchical structures and their magnetically recyclable photocatalytic activity. J Mater Chem 22:4832

    Article  CAS  Google Scholar 

  • Ma HL, Xu YF, Qi XR, Maitani Y, Nagai T (2008) Int J Pharm 354:217–226

    Article  CAS  Google Scholar 

  • Mahmoudi M, Serpooshan V, Laurent S (2011a) Engineered nanoparticles for biomolecular imaging. Nanoscale 3:3007

    Article  CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011b) Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Delivery Rev 63:2

    Article  Google Scholar 

  • Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, Cabot A, Yedra L, Estrade S, Peiro ́ F, et al. (2013) Learning from nature to improve the heat ́ generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 3: 1652

    Google Scholar 

  • Maurizi L, Bisht H, Bouyer F, Millot N (2009) Langmuir 25:8857–8859

    Article  CAS  Google Scholar 

  • McNeil SE (2009) Wiley Interdiscip Rev: Nanomed Nanobiotechnol 1: 264–271

    Google Scholar 

  • Medintz I (2006) Nat Mater 5:842

    Article  CAS  Google Scholar 

  • Mohapatra S, Rout SR, Maiti S, Maiti TK, Panda AB (2011) J Mater Chem 21:9185

    Article  CAS  Google Scholar 

  • Morales MA, Finotelli PV, Coaquira JAH, Rocha-Le˜ao MHM, Diaz-Aguila C, Baggio-Saitovitch EM, Rossi A (2008) Mater Sci Eng, C 28: 253–257

    Google Scholar 

  • Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K (2006) NMR Biomed 19:142–164

    Article  CAS  Google Scholar 

  • Nakata K, Hu Y, Uzun O, Bakr O, Stellacci F (2008) Chains of superparamagnetic nanoparticles. Adv Mater 20:4294–4299

    Article  CAS  Google Scholar 

  • Napper D (1970) J Colloid Interface Sci 32:106–114

    Article  CAS  Google Scholar 

  • Nikam DS, Jadhav SV, Khot VM, Bohara RA, Mali SS, Hong CH, Pawar SH (2015) RSC Adv 5:2338–2345

    Article  CAS  Google Scholar 

  • Nishio Y, Yamada A, Ezaki K, Miyashita Y, Furukawa H, Horie K (2004) Polymer 45:7129–7136

    Article  CAS  Google Scholar 

  • Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Prog Polym Sci 36:168

    Article  CAS  Google Scholar 

  • Pardoe H, Chua-anusorn W, St Pierre TG, Dobson J (2001) J Magn Magn Mater 225: 41–46

    Google Scholar 

  • Patil RM, Shete PB, Thorat ND, Otari SV, Barick KC, Prasad A, Ningthoujam RS, Tiwale BM, Pawar SH (2014) J Magn Magn Mater 355:22–30

    Article  CAS  Google Scholar 

  • Patil RM, Thorat ND, Shete PB, Otari SV, Tiwale BM, Pawar SH (2016) Mater Sci Eng, C 59: 702–709

    Google Scholar 

  • Perez JM (2007) Iron Oxide Nanoparticles: Hidden Talent. Nat Nanotechnol 2:535–536

    Article  CAS  Google Scholar 

  • Persson P, Nilsson N, Sj¨oberg S(1996) J Colloid Interface Sci 177: 263–275

    Google Scholar 

  • Peters C, Hoop M, Pane S, Nelson BJ, Hierold C (2016) ́ Degradable magnetic composites for minimally invasive interventions: Device fabrication, targeted drug delivery, and cytotoxicity tests. Adv Mater 28:533–538

    Article  CAS  Google Scholar 

  • Pimpha N, Chaleawlert-umpon S, Sunintaboon P (2012) Core/shell polymethyl methacrylate/polyethyleneimine particles incorporating large amounts of iron oxide nanoparticles prepared by emulsifier-free emulsion polymerization. Polymer 53:2015

    Article  CAS  Google Scholar 

  • Portet D, Denizot B, Rump E, Hindre F, Le Jeune J-J, Jallet P (2001) Drug Dev Res 54:173–181

    Article  CAS  Google Scholar 

  • Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nat Chem 3:634

    Article  CAS  Google Scholar 

  • Ramasamy M, Lee SS, Yi DK, Kim K (2014) J Mater Chem B 2:981

    Article  CAS  Google Scholar 

  • Roberts D, Zhu WL, Frommen CM, Rosenzweig Z (2000) J Appl Phys 87:6208

    Article  CAS  Google Scholar 

  • Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) J Phys Chem B 109:3879–3885

    Article  CAS  Google Scholar 

  • Sairam M, Naidu BVK, Nataraj SK, Sreedhar B, Aminabhavi TM (2006) J Membr Sci 283:65–73

    Article  CAS  Google Scholar 

  • Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, de Rosales RTM (2013) ACS Nano 7:500–512

    Article  CAS  Google Scholar 

  • Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Chem Rev 113:1904–2074

    Article  CAS  Google Scholar 

  • Sch¨opf B, Neuberger T, Schulze K, Petri A, Chastellain M, Hofmann M, Hofmann H, von Rechenberg B (2005) J Magn Magn Mater 293: 411–418

    Google Scholar 

  • Schwertmann U, Cornell RM (2008) Iron oxides in the laboratory: Preparation and characterization. John Wiley & Sons

    Google Scholar 

  • Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X (2012) Preparation of Fe3O4@ SiO2@ layered double hydroxide core−shell microspheres for magnetic separation of proteins. J Am Chem Soc 134:1071–1077

    Article  CAS  Google Scholar 

  • Shao J, **e X, ** Y, Liu X, Yang Y (2013) Characterization of Fe3O4/SiO2 composite core–shell nanoparticles synthesized in isopropanol medium. Glass Phys Chem 39:329

    Article  CAS  Google Scholar 

  • Shi Y, Li HY, Wang L, Shen W, Chen HZ (2012) Novel α-Fe2O3/CdS cornlike nanorods with enhanced photocatalytic performance. ACS Appl Mater Interfaces 4:4800

    Article  CAS  Google Scholar 

  • Sim S, Miyajima D, Niwa T, Taguchi H, Aida T (2015) Tailoring micrometer-long high-integrity 1D array of superparamagnetic nanoparticles in a nanotubular protein jacket and its lateral magnetic assembling behavior. J Am Chem Soc 137:4658–4661

    Article  CAS  Google Scholar 

  • Sipos, (2003) J Inorg Biochem 95:55–63

    Article  CAS  Google Scholar 

  • Slöetjes SD, Urdahl HH, Grepstad JK, Folven E (2017) Tailoring the magnetic order in a supermagnetic metamaterial. AIP Adv 7:056325

    Article  Google Scholar 

  • Sperling RA, Parak WJ (2010) Philos Trans R Soc, A 368: 1333–1383

    Google Scholar 

  • Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A 368:1333

    Article  CAS  Google Scholar 

  • Tang D, Yuan R, Chai Y (2006) J Phys Chem B 110:11640–11646

    Article  CAS  Google Scholar 

  • Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45

    Article  CAS  Google Scholar 

  • Tejedor-Tejedor MI, Anderson MA (1990) Langmuir 6:602–611

    Article  CAS  Google Scholar 

  • Thandavan K, Gandhi S, Sethuraman S, Rayappan JB, Krishnan UM (2011) A novel nanostructured iron oxide-gold bioelectrode for hydrogen peroxide sensing. Nanotechnology 22:265505

    Article  Google Scholar 

  • Thorat ND, Patil RM, Khot VM, Salunkhe AB, Prasad AI, Barick KC, Ningthoujam RS, Pawar SH (2013) New J Chem 37:2733

    Article  CAS  Google Scholar 

  • Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–5431

    Article  CAS  Google Scholar 

  • Verwey EJW, Overbeek JTG, Overbeek JTG (1999) Theory of the stability of lyophobic colloids. Courier Corporation

    Google Scholar 

  • Wang W-C, Neoh K-G, Kang E-T (2006) Macromol. Rapidcommun. 27:1665–1669

    CAS  Google Scholar 

  • Wang G, ** L, Dong Y, Niu L, Liu Y, Ren F, Su X (2013) Multifunctional Fe3O4-CdTe@SiO2@carboxymethyl chitosan drug nanocarriers: Synergistic effect towards magnetic targeted drug delivery and cell imaging, New. J Chem 38:700–708

    Google Scholar 

  • Wei W, Zhaohui W, Taekyung Y, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501. https://doi.org/10.1088/1468-6996/16/2/023501

    Article  CAS  Google Scholar 

  • White MA, Johnson JA, Koberstein JT, Turro NJ (2007) J Am Chem Soc 129:4504

    Article  CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Nanoscale Res Lett 3:397–415

    Article  CAS  Google Scholar 

  • Wu W, Zhang SF, Ren F, **ao XH, Zhou J, Jiang CZ (2011) Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core–shell heterostructures: Formation mechanism, and enhanced photocatalytic activity. Nanoscale 3:4676

    Article  CAS  Google Scholar 

  • Wu W, Zhang SF, **ao XH, Zhou J, Ren F, Sun LL, Jiang CZ (2012) Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindle like mesoporous α-Fe2O3/ZnO core–shell heterostructures. ACS Appl Mater Interfaces 4:3602

    Article  CAS  Google Scholar 

  • ** GC, Yue B, Cao JY, Ye JH (2011) Fe3O4/WO3 Hierarchical core–shell structure: High-performance and recyclable visible-light photocatalysis. Chem Eur J 17:5145

    Article  CAS  Google Scholar 

  • **e J, Chen K, Lee H-Y, Xu C, Hsu AR, Peng S, Chen X, Sun S (2008) J Am Chem Soc 130:7542–7543

    Article  CAS  Google Scholar 

  • **e, Xu C, Kohler N, Hou Y, Sun S (2007) Adv Mater19: 3163–3166

    Google Scholar 

  • Xu H, Yan F, Monson EE, Kopelman R (2003) J Biomed Mater Res, Part A 66:870–879

    Article  Google Scholar 

  • Xu Z, Hou Y, Sun S (2007) J Am Chem Soc 129:8698–8699

    Article  CAS  Google Scholar 

  • Xu H, Aguilar ZP, Yang L, Kuang M, Duan H, **ong Y, Wei H, Wang A (2011) Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32:9758–9765

    Article  CAS  Google Scholar 

  • Xu X, Li H, Zhang Q, Hu H, Zhao Z, Li J, Li J, Qiao Y, Gogotsi Y (2015) Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 9:3969–3977

    Article  CAS  Google Scholar 

  • Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC (2011) Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomater 32:1890

    Article  CAS  Google Scholar 

  • Yang H-H, Zhang S-Q, Chen X-L, Zhuang Z-X, Xu J-G, Wang X-R (2004) Anal Chem 76:1316–1321

    Article  CAS  Google Scholar 

  • Ye Y, Kuai L, Geng B (2012) A template-free route to a Fe3O4-Co3O4 yolk-shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media. J Mater Chem 22:19132

    Article  CAS  Google Scholar 

  • Yee C, Kataby G, Ulman A, Prozorov T, White H, King A, Rafailovich M, Sokolov J, Gedanken A (1999) Langmuir 15:7111–7115

    Article  CAS  Google Scholar 

  • Yu X, Wan J, Shan Y, Chen K, Han X (2009) A facile approach to fabrication of bifunctional magnetic-optical Fe3O4@ ZnS microspheres. Chem Mater 21:4892

    Article  CAS  Google Scholar 

  • Zedan AF, Abdelsayed V, Mohamed MB, El-Shall MS (2013) Rapid synthesis of magnetic/luminescent (Fe3O4/CdSe) nanocomposites by microwave irradiation. J Nanopart Res 15:1312

    Article  Google Scholar 

  • Zang Y, Zhang F, Huang D, Di CA, Zhu D (2015) Sensitive flexible magnetic sensors using organic transistors with magnetic functionalized suspended gate electrodes. Adv Mater 27: 7979−7985

    Google Scholar 

  • Zhan F, Zhang C-Y (2011) Bifunctional nanoparticles with superparamagnetic and luminescence properties. J Mater Chem 21:4765

    Article  CAS  Google Scholar 

  • Zhang SF, Ren F, Wu W, Zhou J, **ao XH, Sun LL, Liu Y, Jiang CZ (2013) Controllable synthesis of recyclable core–shell γ-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. Phys Chem Chem Phys 15:8228

    Article  CAS  Google Scholar 

  • Zhang C, W¨angler B, Morgenstern B, Zentgraf H, Eisenhut M, Untenecker H, Kr¨uger R, Huss R, Seliger C, Semmler W, Kiessling F (2007) Langmuir 23: 1427–1434

    Google Scholar 

  • Zhao W, Cui Y, ZhoudJunqing Y, Sun J, Liu X (2022) Rapid adsorption of dyes from aqueous solutions by modified lignin derived superparamagnetic compositesJ Mol Struc 1261: 132954 https://doi.org/10.1016/j.molstruc.2022.132954

  • Zhao N, Gao MY (2009) Magnetic janus particles prepared by a flame synthetic approach: Synthesis, characterizations and properties. Adv Mater 21:184

    Article  CAS  Google Scholar 

  • Zhi J, Wang Y, Lu Y, Ma J, Luo G (2006) React Funct Polym 66:1552–1558

    Article  CAS  Google Scholar 

  • Zhou W, Chen Y, Wang X, Guo Z, Hu Y (2011) Synthesis of Fe3O4@PbS hybrid nanoparticles through the combination of surface-initiated atom transfer radical polymerization and acidolysis by H2S. J Nanosci Nanotechnol 11:98

    Article  CAS  Google Scholar 

  • Zhou L, He B, Zhang F (2012a) Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic poly(vinyl alcohol) gel beads for drug delivery. ACS Appl Mater Interfaces 4:192

    Article  CAS  Google Scholar 

  • Zhou S, Chen QW, Hu XY, Zhao TY (2012b) Bifunctional luminescent superparamagnetic nanocomposites of CdSe/CdS-Fe3O4 synthesized via a facile method. J Mater Chem 22:8263

    Article  CAS  Google Scholar 

  • Zhou H, Qian W, Uckun FM, Wang L, Wang YA, Chen H, Kooby D, Yu Q, Lipowska M, Staley CA, Mao H, Yang L (2015) ACS Nano 9:7976–7991

    Article  CAS  Google Scholar 

  • Zhu Y, Ikoma T, Hanagata N, Kaskel S (2010) Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery. Small 6:471

    Article  CAS  Google Scholar 

  • Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F (2012) Biomaterials 33:4618–4627

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanasaheb D. Thorat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirsat, S.D., Mane, R.S., Thorat, N.D. (2023). Functionalized Strategies of Superparamagnetic Materials. In: Thorat, N., Sahu, N.K. (eds) Superparamagnetic Materials for Cancer Medicine. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-031-37287-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37287-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37286-5

  • Online ISBN: 978-3-031-37287-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation