Machine Learning Applications in Chemical Kinetics and Thermochemistry

  • Chapter
  • First Online:
Machine Learning in Molecular Sciences

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 36))

Abstract

Kinetic modeling can predict the performance of a reaction system and aids in understanding detailed reaction chemistry. However, high-fidelity reaction simulations require accurate thermodynamic and kinetic parameters of the involved species, which are not always available, especially for complex reaction networks containing hundreds or thousands of chemicals. This chapter aims to survey recent developments in machine learning in predicting molecular thermochemistry and kinetic properties, with an emphasis on advances in deep learning-based molecular property and reaction kinetics prediction. The pros and cons of commonly used conventional theoretical models are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja K, Green WH, Li Y-P (2021) Learning to optimize molecular geometries using reinforcement learning. J Chem Theor Comput 17(2):818–825

    Article  Google Scholar 

  2. Allison TC (2016) Application of an artificial neural network to the prediction of OH radical reaction rate constants for evaluating global warming potential. J Phys Chem B 120(8):1854–1863

    Article  Google Scholar 

  3. Amini A, Schwarting W, Soleimany A, Rus D (2020) Deep evidential regression. Adv Neural Inf Process Syst 33:14927–14937

    Google Scholar 

  4. Bachrach SM (1990) The group equivalent reaction: an improved method for determining ring strain energy. J Chem Educ 67(11):907

    Article  Google Scholar 

  5. Baker J, Hehre WJ (1991) Geometry optimization in Cartesian coordinates: the end of the Z-matrix? J Comput Chem 12(5):606–610

    Article  Google Scholar 

  6. Bartók AP, Kondor R, Csányi G (2013) On representing chemical environments. Phys Rev B 87(18):184115

    Article  Google Scholar 

  7. Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104(13):136403

    Article  Google Scholar 

  8. Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R (2018) Relational inductive biases, deep learning, and graph networks. ar**v preprint ar**v:180601261

    Google Scholar 

  9. Behler J (2011) Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys 134(7):074106

    Article  Google Scholar 

  10. Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett 98(14):146401

    Article  Google Scholar 

  11. Behn A, Zimmerman PM, Bell AT, Head-Gordon M (2011) Efficient exploration of reaction paths via a freezing string method. J Chem Phys 135(22):224108

    Article  Google Scholar 

  12. Benson SW, Buss JH (1958) Additivity rules for the estimation of molecular properties. Thermodynamic properties. J Chem Phys 29(3):546–572

    Google Scholar 

  13. Bernardo J, Berger J, Dawid A, Smith A (1998) Regression and classification using Gaussian process priors. Bayesian Stat 6:475

    Google Scholar 

  14. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl Math 6(1):76–90

    Google Scholar 

  15. Cai C, Wang S, Xu Y, Zhang W, Tang K, Ouyang Q, Lai L, Pei J (2020) Transfer learning for drug discovery. J Med Chem 63(16):8683–8694

    Article  Google Scholar 

  16. Cao D-S, Xu Q-S, Hu Q-N, Liang Y-Z (2013) ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics 29(8):1092–1094

    Article  Google Scholar 

  17. Chen C, Ye W, Zuo Y, Zheng C, Ong SP (2019) Graph networks as a universal machine learning framework for molecules and crystals. Chem Mater 31(9):3564–3572

    Article  Google Scholar 

  18. Chen L-Y, Hsu T-W, Hsiung T-C, Li Y-P (2022) Deep learning-based increment theory for formation enthalpy predictions. J Phys Chem A 126(41):7548–7556

    Article  Google Scholar 

  19. Cheng Z, Yang B, Chen Q, Tan Y, Gao X, Yuan T, Shen Z (2018) 2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation. Chemosphere 212:828–836

    Article  Google Scholar 

  20. Chicco D (2021) Siamese neural networks: an overview. Artif Neural Netw 73–94

    Google Scholar 

  21. Chithrananda S, Grand G, Ramsundar B (2020) Chemberta: large-scale self-supervised pretraining for molecular property prediction. ar**v preprint ar**v:201009885

    Google Scholar 

  22. Choi S, Kim Y, Kim JW, Kim Z, Kim WY (2018) Feasibility of activation energy prediction of gas‐phase reactions by machine learning. Chem A Eur J 24(47):12354–12358

    Google Scholar 

  23. Chowdhary K (2020) Natural language processing. Fundam Artif Intell 603–649

    Google Scholar 

  24. Coley CW, Barzilay R, Green WH, Jaakkola TS, Jensen KF (2017) Convolutional embedding of attributed molecular graphs for physical property prediction. J Chem Inf Model 57(8):1757–1772

    Article  Google Scholar 

  25. Constantinou L, Gani R (1994) New group contribution method for estimating properties of pure compounds. AIChE J 40(10):1697–1710

    Article  Google Scholar 

  26. Constantinou L, Gani R, O’Connell JP (1995) Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method. Fluid Phase Equilib 103(1):11–22

    Article  Google Scholar 

  27. Craven GT, Lubbers N, Barros K, Tretiak S (2020) Machine learning approaches for structural and thermodynamic properties of a Lennard-Jones fluid. J Chem Phys 153(10):104502

    Article  Google Scholar 

  28. de Luca A, Horvath D, Marcou G, Solov’ev V, Varnek A (2012) Mining chemical reactions using neighborhood behavior and condensed graphs of reactions approaches. J Chem Inf Model 52(9):2325–2338

    Google Scholar 

  29. Dean A (1985) Predictions of pressure and temperature effects upon radical addition and recombination reactions. J Phys Chem 89(21):4600–4608

    Article  Google Scholar 

  30. Denzel A, Haasdonk B, Kästner J (2019) Gaussian process regression for minimum energy path optimization and transition state search. J Phys Chem A 123(44):9600–9611

    Article  Google Scholar 

  31. Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. ar**v preprint ar**v:181004805

    Google Scholar 

  32. Du R-L, Wu K, Xu D-A, Chao C-Y, Zhang L, Du X-D (2016) A modified Arrhenius equation to predict the reaction rate constant of Anyuan pulverized-coal pyrolysis at different heating rates. Fuel Process Technol 148:295–301

    Article  Google Scholar 

  33. Duchowicz P, Castro E, Fernandez F, Pankratov A (2006) QSPR evaluation of thermodynamic properties of acyclic and aromatic compounds. In: Anales de la Asociación Química Argentina, vol 4–6. SciELO Argentina, pp 31–45

    Google Scholar 

  34. Dudek AZ, Arodz T, Gálvez J (2006) Computational methods in develo** quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen 9(3):213–228

    Article  Google Scholar 

  35. Dudev T, Lim C (1998) Ring strain energies from ab initio calculations. J Am Chem Soc 120(18):4450–4458

    Article  Google Scholar 

  36. Dutot A-L, Rude J, Aumont B (2003) Neural network method to estimate the aqueous rate constants for the OH reactions with organic compounds. Atmos Environ 37(2):269–276

    Article  Google Scholar 

  37. Dyekjær JD, Jónsdóttir SÓ (2003) QSPR models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers. Ind Eng Chem Res 42(18):4241–4259

    Google Scholar 

  38. Eckart C (1935) Some studies concerning rotating axes and polyatomic molecules. Phys Rev 47(7):552

    Article  MATH  Google Scholar 

  39. Erhan D, Courville A, Bengio Y, Vincent P (2010) Why does unsupervised pre-training help deep learning? In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR workshop and conference proceedings, pp 201–208

    Google Scholar 

  40. Faber FA, Christensen AS, Huang B, Von Lilienfeld OA (2018) Alchemical and structural distribution based representation for universal quantum machine learning. J Chem Phys 148(24):241717

    Article  Google Scholar 

  41. Fang X, Liu L, Lei J, He D, Zhang S, Zhou J, Wang F, Wu H, Wang H (2022) Geometry-enhanced molecular representation learning for property prediction. Nat Mach Intell 4(2):127–134

    Article  Google Scholar 

  42. Fatemi M (2006) Prediction of ozone tropospheric degradation rate constant of organic compounds by using artificial neural networks. Anal Chim Acta 556(2):355–363

    Article  Google Scholar 

  43. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322

    Article  MATH  Google Scholar 

  44. Fooshee D, Andronico A, Baldi P (2013) ReactionMap: an efficient atom-map** algorithm for chemical reactions. J Chem Inf Model 53(11):2812–2819

    Article  Google Scholar 

  45. Funai SS, Giataganas D (2020) Thermodynamics and feature extraction by machine learning. Phys Rev Res 2(3):033415

    Article  Google Scholar 

  46. Gao CW, Allen JW, Green WH, West RH (2016) Reaction mechanism generator: automatic construction of chemical kinetic mechanisms. Comput Phys Commun 203:212–225

    Article  Google Scholar 

  47. Gardas RL, Coutinho JA (2008) A group contribution method for heat capacity estimation of ionic liquids. Ind Eng Chem Res 47(15):5751–5757

    Article  Google Scholar 

  48. Gastegger M, Schwiedrzik L, Bittermann M, Berzsenyi F, Marquetand P (2018) wACSF—weighted atom-centered symmetry functions as descriptors in machine learning potentials. J Chem Phys 148(24):241709

    Article  Google Scholar 

  49. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: International conference on machine learning. PMLR, pp 1263–1272

    Google Scholar 

  50. Glavatskikh M, Madzhidov T, Horvath D, Nugmanov R, Gimadiev T, Malakhova D, Marcou G, Varnek A (2019) Predictive models for kinetic parameters of cycloaddition reactions. Mol Inf 38(1–2):1800077

    Article  Google Scholar 

  51. Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24(109):23–26

    Article  MathSciNet  MATH  Google Scholar 

  52. Gonzalez MP, Teran C, Saiz-Urra L, Teijeira M (2008) Variable selection methods in QSAR: an overview. Curr Top Med Chem 8(18):1606–1627

    Article  Google Scholar 

  53. Goodarzi M, Dejaegher B, Heyden YV (2012) Feature selection methods in QSAR studies. J AOAC Int 95(3):636–651

    Article  Google Scholar 

  54. Goodrow A, Bell AT, Head-Gordon M (2009) Transition state-finding strategies for use with the growing string method. J Chem Phys 130(24):244108

    Article  Google Scholar 

  55. Goreinov SA, Oseledets IV, Savostyanov DV, Tyrtyshnikov EE, Zamarashkin NL (2010) How to find a good submatrix. In: Matrix methods: theory, algorithms and applications: dedicated to the memory of Gene Golub. World Scientific, pp 247–256

    Google Scholar 

  56. Grambow CA, Li Y-P, Green WH (2019) Accurate thermochemistry with small data sets: a bond additivity correction and transfer learning approach. J Phys Chem A 123(27):5826–5835

    Article  Google Scholar 

  57. Grambow CA, Pattanaik L, Green WH (2020) Deep learning of activation energies. J Phys Chem Lett 11(8):2992–2997

    Article  Google Scholar 

  58. Grambow CA, Pattanaik L, Green WH (2020) Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry. Sci Data 7(1):1–8

    Article  Google Scholar 

  59. Gubaev K, Podryabinkin EV, Shapeev AV (2018) Machine learning of molecular properties: locality and active learning. J Chem Phys 148(24):241727

    Article  Google Scholar 

  60. Halgren TA, Lipscomb WN (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 49(2):225–232

    Article  Google Scholar 

  61. Hansen K, Biegler F, Ramakrishnan R, Pronobis W, Von Lilienfeld OA, Müller K-R, Tkatchenko A (2015) Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J Phys Chem Lett 6(12):2326–2331

    Article  Google Scholar 

  62. Heid E, Green WH (2021) Machine learning of reaction properties via learned representations of the condensed graph of reaction. J Chem Inf Model 62(9):2101–2110

    Google Scholar 

  63. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985

    Article  Google Scholar 

  64. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  Google Scholar 

  65. Hirschfeld L, Swanson K, Yang K, Barzilay R, Coley CW (2020) Uncertainty quantification using neural networks for molecular property prediction. J Chem Inf Model 60(8):3770–3780

    Article  Google Scholar 

  66. Ho P, Coltrin ME, Binkley J, Melius C (1986) Theoretical study of the heats of formation of Si2Hn (n= 0–6) compounds and trisilane. J Phys Chem 90(15):3399–3406

    Article  Google Scholar 

  67. Honda S, Shi S, Ueda HR (2019) Smiles transformer: pre-trained molecular fingerprint for low data drug discovery. ar**v preprint ar**v:191104738

    Google Scholar 

  68. Hoonakker F, Lachiche N, Varnek A, Wagner A (2011) Condensed graph of reaction: considering a chemical reaction as one single pseudo molecule. Int J Artif Intell Tools 20(2):253–270

    Article  Google Scholar 

  69. Houston PL, Nandi A, Bowman JM (2019) A machine learning approach for prediction of rate constants. J Phys Chem Lett 10(17):5250–5258

    Article  Google Scholar 

  70. Huang W, Zhao D, Sun F, Liu H, Chang E (2015) Scalable Gaussian process regression using deep neural networks. In: Twenty-fourth international joint conference on artificial intelligence

    Google Scholar 

  71. Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Classical and quantum dynamics in condensed phase simulations. World Scientific, pp 385–404

    Google Scholar 

  72. Jackson R, Zhang W, Pearson J (2021) TSNet: predicting transition state structures with tensor field networks and transfer learning. Chem Sci 12(29):10022–10040

    Article  Google Scholar 

  73. Jaworski W, Szymkuć S, Mikulak-Klucznik B, Piecuch K, Klucznik T, Kaźmierowski M, Rydzewski J, Gambin A, Grzybowski BA (2019) Automatic map** of atoms across both simple and complex chemical reactions. Nat Commun 10(1):1–11

    Article  Google Scholar 

  74. Jensen F (1985) Activation energies and the Arrhenius equation. Qual Reliab Eng Int 1(1):13–17

    Article  Google Scholar 

  75. Jha D, Choudhary K, Tavazza F, Liao W-k, Choudhary A, Campbell C, Agrawal A (2019) Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning. Nat Commun 10(1):1–12

    Article  Google Scholar 

  76. Joback KG, Reid RC (1987) Estimation of pure-component properties from group-contributions. Chem Eng Commun 57(1–6):233–243

    Article  Google Scholar 

  77. Jorner K, Brinck T, Norrby P-O, Buttar D (2021) Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies. Chem Sci 12(3):1163–1175

    Article  Google Scholar 

  78. Joudaki D, Shafiei F (2020) QSPR models to predict thermodynamic properties of cycloalkanes using molecular descriptors and GA-MLR method. Curr Comput Aided Drug Des 16(1):6–16

    Article  Google Scholar 

  79. Ju X-H, Li Y-M, **ao H-M (2005) Theoretical studies on the heats of formation and the interactions among the difluoroamino groups in polydifluoroaminocubanes. J Phys Chem A 109(5):934–938

    Article  Google Scholar 

  80. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley-Interscience

    Google Scholar 

  81. Khanshan FS, West RH (2016) Develo** detailed kinetic models of syngas production from bio-oil gasification using Reaction Mechanism Generator (RMG). Fuel 163:25–33

    Article  Google Scholar 

  82. Kimber TB, Gagnebin M, Volkamer A (2021) Maxsmi: maximizing molecular property prediction performance with confidence estimation using SMILES augmentation and deep learning. Artif Intell Life Sci 1:100014

    Google Scholar 

  83. Klicpera J, Groß J, Günnemann S (2020) Directional message passing for molecular graphs. ar**v preprint ar**v:200303123

    Google Scholar 

  84. Koistinen O-P, Ásgeirsson V, Vehtari A, Jónsson H (2019) Nudged elastic band calculations accelerated with Gaussian process regression based on inverse interatomic distances. J Chem Theor Comput 15(12):6738–6751

    Article  Google Scholar 

  85. Koistinen O-P, Dagbjartsdóttir FB, Ásgeirsson V, Vehtari A, Jónsson H (2017) Nudged elastic band calculations accelerated with Gaussian process regression. J Chem Phys 147(15):152720

    Article  Google Scholar 

  86. Komp E, Valleau S (2020) Machine learning quantum reaction rate constants. J Phys Chem A 124(41):8607–8613

    Article  Google Scholar 

  87. Kuz’min VE, Artemenko AG, Polischuk PG, Muratov EN, Hromov AI, Liahovskiy AV, Andronati SA, Makan SY (2005) Hierarchic system of QSAR models (1D–4D) on the base of simplex representation of molecular structure. J Mol Model 11(6):457–467

    Google Scholar 

  88. Kuzminykh D, Polykovskiy D, Kadurin A, Zhebrak A, Baskov I, Nikolenko S, Shayakhmetov R, Zhavoronkov A (2018) 3D molecular representations based on the wave transform for convolutional neural networks. Mol Pharm 15(10):4378–4385

    Article  Google Scholar 

  89. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61(6):494

    Article  Google Scholar 

  90. Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in neural information processing systems, vol 30

    Google Scholar 

  91. Le Bellac M, Le Bellac M, Mortessagne F, Batrouni GG, Batrouni G (2004) Equilibrium and non-equilibrium statistical thermodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  92. Lei X, Medford AJ (2021) A universal framework for featurization of atomistic systems. ar**v preprint ar**v:210202390

    Google Scholar 

  93. Li X, Zhang SQ, Xu LC, Hong X (2020) Predicting regioselectivity in radical C−H functionalization of heterocycles through machine learning. Angew Chem Int Ed 59(32):13253–13259

    Article  Google Scholar 

  94. Li Y-P, Han K, Grambow CA, Green WH (2019) Self-evolving machine: a continuously improving model for molecular thermochemistry. J Phys Chem A 123(10):2142–2152

    Article  Google Scholar 

  95. Lin A, Dyubankova N, Madzhidov TI, Nugmanov RI, Verhoeven J, Gimadiev TR, Afonina VA, Ibragimova Z, Rakhimbekova A, Sidorov P (2022) Atom-to-atom map**: a benchmarking study of popular map** algorithms and consensus strategies. Mol Inf 41(4):2100138

    Article  Google Scholar 

  96. Liu K, Sun X, Jia L, Ma J, **ng H, Wu J, Gao H, Sun Y, Boulnois F, Fan J (2019) Chemi-Net: a molecular graph convolutional network for accurate drug property prediction. Int J Mol Sci 20(14):3389

    Article  Google Scholar 

  97. Liu M, Grinberg Dana A, Johnson MS, Goldman MJ, Jocher A, Payne AM, Grambow CA, Han K, Yee NW, Mazeau EJ (2021) Reaction mechanism generator v3.0: advances in automatic mechanism generation. J Chem Inf Model 61(6):2686–2696

    Google Scholar 

  98. Liu Y, Hong W, Cao B (2019) Machine learning for predicting thermodynamic properties of pure fluids and their mixtures. Energy 188:116091

    Article  Google Scholar 

  99. Lorenz S, Groß A, Scheffler M (2004) Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem Phys Lett 395(4–6):210–215

    Article  Google Scholar 

  100. Lu J, Zhang H, Yu J, Shan D, Qi J, Chen J, Song H, Yang M (2021) Predicting rate constants of hydroxyl radical reactions with alkanes using machine learning. J Chem Inf Model 61(9):4259–4265

    Article  Google Scholar 

  101. Lu T, Law CK (2009) Toward accommodating realistic fuel chemistry in large-scale computations. Prog Energy Combust Sci 35(2):192–215

    Article  Google Scholar 

  102. Luo X, Wei X, Chen J, **e Q, Yang X, Peijnenburg WJ (2019) Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: combined experimental and QSAR studies. Water Res 166:115083

    Article  Google Scholar 

  103. MacKay DJ (1998) Introduction to Gaussian processes. NATO ASI Ser F Comput Syst Sci 168:133–166

    MATH  Google Scholar 

  104. Madzhidov T, Bodrov A, Gimadiev T, Nugmanov R, Antipin I, Varnek A (2015) Structure–reactivity relationship in bimolecular elimination reactions based on the condensed graph of a reaction. J Struct Chem 56(7):1227–1234

    Article  Google Scholar 

  105. Madzhidov T, Polishchuk P, Nugmanov R, Bodrov A, Lin A, Baskin I, Varnek A, Antipin I (2014) Structure-reactivity relationships in terms of the condensed graphs of reactions. Russ J Org Chem 50(4):459–463

    Article  Google Scholar 

  106. Makoś MZ, Verma N, Larson EC, Freindorf M, Kraka E (2021) Generative adversarial networks for transition state geometry prediction. J Chem Phys 155(2):024116

    Article  Google Scholar 

  107. Mallikarjun Sharada S, Zimmerman PM, Bell AT, Head-Gordon M (2012) Automated transition state searches without evaluating the Hessian. J Chem Theory Comput 8(12):5166–5174

    Article  Google Scholar 

  108. Marrero J, Gani R (2001) Group-contribution based estimation of pure component properties. Fluid Phase Equilib 183:183–208

    Article  Google Scholar 

  109. Mauri A, Consonni V, Pavan M, Todeschini R (2006) Dragon software: an easy approach to molecular descriptor calculations. Match 56(2):237–248

    MATH  Google Scholar 

  110. Minakata D, Li K, Westerhoff P, Crittenden J (2009) Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. Environ Sci Technol 43(16):6220–6227

    Article  Google Scholar 

  111. Nguyen V-L, Shaker MH, Hüllermeier E (2022) How to measure uncertainty in uncertainty sampling for active learning. Mach Learn 111(1):89–122

    Article  MathSciNet  MATH  Google Scholar 

  112. Nix DA, Weigend AS (1994) Estimating the mean and variance of the target probability distribution. In: Proceedings of 1994 IEEE international conference on neural networks (ICNN'94). IEEE, pp 55–60

    Google Scholar 

  113. Novikov IS, Shapeev AV, Suleimanov YV (2019) Ring polymer molecular dynamics and active learning of moment tensor potential for gas-phase barrierless reactions: application to s+ h2. J Chem Phys 151(22):224105

    Article  Google Scholar 

  114. Nugmanov RI, Mukhametgaleev RN, Akhmetshin T, Gimadiev TR, Afonina VA, Madzhidov TI, Varnek A (2019) CGRtools: python library for molecule, reaction, and condensed graph of reaction processing. J Chem Inf Model 59(6):2516–2521

    Article  Google Scholar 

  115. O’Boyle NM, Hutchison GR (2008) Cinfony-combining open source cheminformatics toolkits behind a common interface. Chem Cent J 2(1):1–10

    Google Scholar 

  116. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  117. Pattanaik L, Ingraham JB, Grambow CA, Green WH (2020) Generating transition states of isomerization reactions with deep learning. Phys Chem Chem Phys 22(41):23618–23626

    Article  Google Scholar 

  118. Peters B, Heyden A, Bell AT, Chakraborty A (2004) A growing string method for determining transition states: comparison to the nudged elastic band and string methods. J Chem Phys 120(17):7877–7886

    Article  Google Scholar 

  119. Peterson AA (2016) Acceleration of saddle-point searches with machine learning. J Chem Phys 145(7):074106

    Article  Google Scholar 

  120. Phillpot SR, Antony AC, Shi L, Fullarton ML, Liang T, Sinnott SB, Zhang Y, Biner SB (2018) Charge Optimized Many Body (COMB) potentials for simulation of nuclear fuel and clad. Comput Mater Sci 148:231–241

    Article  Google Scholar 

  121. Pinheiro GA, Mucelini J, Soares MD, Prati RC, Da Silva JL, Quiles MG (2020) Machine learning prediction of nine molecular properties based on the SMILES representation of the QM9 quantum-chemistry dataset. J Phys Chem A 124(47):9854–9866

    Article  Google Scholar 

  122. Pronobis W, Schütt KT, Tkatchenko A, Müller K-R (2018) Capturing intensive and extensive DFT/TDDFT molecular properties with machine learning. Eur Phys J B 91(8):1–6

    Article  Google Scholar 

  123. Puzyn T, Leszczynski J, Cronin MT (2010) Recent advances in QSAR studies: methods and applications. Springer Science & Business Media

    Google Scholar 

  124. Ramakrishnan R, Dral PO, Rupp M, Von Lilienfeld OA (2014) Quantum chemistry structures and properties of 134 kilo molecules. Sci Data 1(1):1–7

    Article  Google Scholar 

  125. Ravasco JM, Coelho JA (2020) Predictive multivariate models for bioorthogonal inverse-electron demand Diels-Alder reactions. J Am Chem Soc 142(9):4235–4241

    Article  Google Scholar 

  126. Rihani D, Doraiswamy L (1965) Estimation of heat capacity of organic compounds from group contributions. Ind Eng Chem Fundam 4(1):17–21

    Article  Google Scholar 

  127. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754

    Article  Google Scholar 

  128. Ruggiu F, Marcou G, Varnek A, Horvath D (2010) ISIDA property-labelled fragment descriptors. Mol Inf 29(12):855–868

    Article  Google Scholar 

  129. Rupp M, Tkatchenko A, Müller K-R, Von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108(5):058301

    Article  Google Scholar 

  130. Sanyal S, Balachandran J, Yadati N, Kumar A, Rajagopalan P, Sanyal S, Talukdar P (2018) MT-CGCNN: integrating crystal graph convolutional neural network with multitask learning for material property prediction. ar**v preprint ar**v:181105660

    Google Scholar 

  131. Scalia G, Grambow CA, Pernici B, Li Y-P, Green WH (2020) Evaluating scalable uncertainty estimation methods for deep learning-based molecular property prediction. J Chem Inf Model 60(6):2697–2717

    Article  Google Scholar 

  132. Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A (2017) Quantum-chemical insights from deep tensor neural networks. Nat Commun 8(1):1–8

    Article  Google Scholar 

  133. Schütt KT, Sauceda HE, Kindermans P-J, Tkatchenko A, Müller K-R (2018) Schnet—a deep learning architecture for molecules and materials. J Chem Phys 148(24):241722

    Google Scholar 

  134. Schulz E, Speekenbrink M, Krause A (2018) A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J Math Psychol 85:1–16

    Article  MathSciNet  MATH  Google Scholar 

  135. Schwaller P, Hoover B, Reymond J-L, Strobelt H, Laino T (2021) Extraction of organic chemistry grammar from unsupervised learning of chemical reactions. Sci Adv 7(15):eabe4166

    Google Scholar 

  136. Sensoy M, Kaplan L, Kandemir M (2018) Evidential deep learning to quantify classification uncertainty. In: Advances in neural information processing systems, vol 31

    Google Scholar 

  137. Shafiei F (2015) Relationship between topological indices and thermodynamic properties and of the monocarboxylic acids applications in QSPR. Iran J Math Chem 6(1):15–28

    Google Scholar 

  138. Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24(111):647–656

    Article  MathSciNet  MATH  Google Scholar 

  139. Shen J, Nicolaou CA (2019) Molecular property prediction: recent trends in the era of artificial intelligence. Drug Discov Today Technol 32:29–36

    Article  Google Scholar 

  140. Slakman BL, Simka H, Reddy H, West RH (2016) Extending reaction mechanism generator to silicon hydride chemistry. Ind Eng Chem Res 55(49):12507–12515

    Article  Google Scholar 

  141. Smidstrup S, Pedersen A, Stokbro K, Jónsson H (2014) Improved initial guess for minimum energy path calculations. J Chem Phys 140(21):214106

    Article  Google Scholar 

  142. Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, Barros K, Tretiak S, Isayev O, Roitberg AE (2019) Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nat Commun 10(1):1–8

    Article  Google Scholar 

  143. Soleimany AP, Amini A, Goldman S, Rus D, Bhatia SN, Coley CW (2021) Evidential deep learning for guided molecular property prediction and discovery. ACS Cent Sci 7(8):1356–1367

    Article  Google Scholar 

  144. Stewart JJ (2004) Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation. J Mol Model 10(1):6–12

    Article  MathSciNet  Google Scholar 

  145. Sun M, Zhao S, Gilvary C, Elemento O, Zhou J, Wang F (2020) Graph convolutional networks for computational drug development and discovery. Brief Bioinform 21(3):919–935

    Article  Google Scholar 

  146. Thomas N, Smidt T, Kearnes S, Yang L, Li L, Kohlhoff K, Riley P (2018) Tensor field networks: rotation-and translation-equivariant neural networks for 3d point clouds. ar**v preprint ar**v:180208219

    Google Scholar 

  147. Tian WX, Tsou CL (1982) Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry 21(5):1028–1032

    Article  Google Scholar 

  148. Toplak M, Močnik R, Polajnar M, Bosnić Z, Carlsson L, Hasselgren C, Demšar J, Boyer S, Zupan B, Stålring J (2014) Assessment of machine learning reliability methods for quantifying the applicability domain of QSAR regression models. J Chem Inf Model 54(2):431–441

    Google Scholar 

  149. Torng W, Altman RB (2017) 3D deep convolutional neural networks for amino acid environment similarity analysis. BMC Bioinform 18(1):1–23

    Article  Google Scholar 

  150. Torres JAG, Jennings PC, Hansen MH, Boes JR, Bligaard T (2019) Low-scaling algorithm for nudged elastic band calculations using a surrogate machine learning model. Phys Rev Lett 122(15):156001

    Article  Google Scholar 

  151. Tran K, Ulissi ZW (2018) Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat Catal 1(9):696–703

    Article  Google Scholar 

  152. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29(6–7):476–488

    Article  Google Scholar 

  153. Ulissi ZW, Medford AJ, Bligaard T, Nørskov JK (2017) To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat Commun 8(1):1–7

    Article  Google Scholar 

  154. Varnek A, Fourches D, Hoonakker F, Solov’ev VP (2005) Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J Comput Aided Mol Des 19(9):693–703

    Google Scholar 

  155. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, vol 30

    Google Scholar 

  156. Wang S, Guo Y, Wang Y, Sun H, Huang J (2019) Smiles-bert: large scale unsupervised pre-training for molecular property prediction. In: Proceedings of the 10th ACM international conference on bioinformatics, computational biology and health informatics, pp 429–436

    Google Scholar 

  157. Wang W, Yang T, Harris WH, Gómez-Bombarelli R (2020) Active learning and neural network potentials accelerate molecular screening of ether-based solvate ionic liquids. Chem Commun 56(63):8920–8923

    Article  Google Scholar 

  158. Wang X, Li Z, Jiang M, Wang S, Zhang S, Wei Z (2019) Molecule property prediction based on spatial graph embedding. J Chem Inf Model 59(9):3817–3828

    Article  Google Scholar 

  159. Ward L, Dandu N, Blaiszik B, Narayanan B, Assary RS, Redfern PC, Foster I, Curtiss LA (2021) Graph-based approaches for predicting solvation energy in multiple solvents: open datasets and machine learning models. J Phys Chem A 125(27):5990–5998

    Article  Google Scholar 

  160. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36

    Google Scholar 

  161. Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3(1):1–40

    Google Scholar 

  162. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, Leswing K, Pande V (2018) MoleculeNet: a benchmark for molecular machine learning. Chem Sci 9(2):513–530

    Article  Google Scholar 

  163. **e T, Grossman JC (2018) Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 120(14):145301

    Article  Google Scholar 

  164. **e Y, Vandermause J, Ramakers S, Protik NH, Johansson A, Kozinsky B (2022) Uncertainty-aware molecular dynamics from Bayesian active learning: phase transformations and thermal transport in SiC. ar**v preprint ar**v:220303824

    Google Scholar 

  165. Yamada H, Liu C, Wu S, Koyama Y, Ju S, Shiomi J, Morikawa J, Yoshida R (2019) Predicting materials properties with little data using shotgun transfer learning. ACS Cent Sci 5(10):1717–1730

    Article  Google Scholar 

  166. Yang K, Swanson K, ** W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59(8):3370–3388

    Article  Google Scholar 

  167. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474

    Article  MathSciNet  Google Scholar 

  168. Yoon J, Cao Z, Raju RK, Wang Y, Burnley R, Gellman AJ, Farimani AB, Ulissi ZW (2021) Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy. Mach Learn Sci Technol 2(4):045018

    Article  Google Scholar 

  169. Zanni R, Galvez-Llompart M, Galvez J, Garcia-Domenech R (2014) QSAR multi-target in drug discovery: a review. Curr Comput Aided Drug Des 10(2):129–136

    Article  MATH  Google Scholar 

  170. Zhang J, Lei Y-K, Zhang Z, Han X, Li M, Yang L, Yang YI, Gao YQ (2021) Deep reinforcement learning of transition states. Phys Chem Chem Phys 23(11):6888–6895

    Article  Google Scholar 

  171. Zhang K, Yin L, Liu G (2021) Physically inspired atom-centered symmetry functions for the construction of high dimensional neural network potential energy surfaces. Comput Mater Sci 186:110071

    Article  Google Scholar 

  172. Zhang P, Yee NW, Filip SV, Hetrick CE, Yang B, Green WH (2018) Modeling study of the anti-knock tendency of substituted phenols as additives: an application of the reaction mechanism generator (RMG). Phys Chem Chem Phys 20(16):10637–10649

    Article  Google Scholar 

  173. Zhang S, Tong H, Xu J, Maciejewski R (2019) Graph convolutional networks: a comprehensive review. Comput Soc Netw 6(1):1–23

    Article  Google Scholar 

  174. Zhang Z, Li H, Chang H, Pan Z, Luo X (2018) Machine learning predictive framework for CO2 thermodynamic properties in solution. J CO2 Utilization 26:152–159

    Google Scholar 

  175. Zhao Q, Savoie BM (2020) Self-consistent component increment theory for predicting enthalpy of formation. J Chem Inf Model 60(4):2199–2207

    Google Scholar 

  176. Zhu X, Thompson KC, Martínez TJ (2019) Geodesic interpolation for reaction pathways. J Chem Phys 150(16):164103

    Article  Google Scholar 

  177. Zhuang F, Qi Z, Duan K, ** D, Zhu Y, Zhu H, **ong H, He Q (2020) A comprehensive survey on transfer learning. Proc IEEE 109(1):43–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Pei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, LY., Li, YP. (2023). Machine Learning Applications in Chemical Kinetics and Thermochemistry. In: Qu, C., Liu, H. (eds) Machine Learning in Molecular Sciences. Challenges and Advances in Computational Chemistry and Physics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-37196-7_7

Download citation

Publish with us

Policies and ethics

Navigation